网页分类问题的介绍以及数据集的下载,见基于决策树的网页分类(Python+Spark实现)
import sys
from time import time
import pandas as pd
import matplotlib.pyplot as plt
from pyspark import SparkConf, SparkContext
from pyspark.mllib.classification import SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
import numpy as np
from pyspark.mllib.evaluation import BinaryClassificationMetrics
from pyspark.mllib.feature import StandardScaler
def SetLogger( sc ):
logger = sc._jvm.org.apache.log4j
logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )
logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR)
def SetPath(sc):
global Path
if sc.master[0:5]=="local" :
Path="D:\\data\\input\\"
else:
Path="hdfs://master:9000/user/hduser/"
#如果要在cluster模式运行(hadoop yarn 或Spark Stand alone),请按照书上的说明,先把文件上传到HDFS目录
def get_mapping(rdd, idx):
return rdd.map(lambda fields: fields[idx]).distinct().zipWithIndex().collectAsMap()
def extract_label(record):
label=(record[-1])
return float(label)
def extract_features(field,categoriesMap,featureEnd):
categoryIdx = categoriesMap[field[3]]
categoryFeatures = np.zeros(len(categoriesMap))
categoryFeatures[categoryIdx] = 1
numericalFeatures=[convert_float(field) for field in field[4: featureEnd]]
return np.concatenate(( categoryFeatures, numericalFeatures))
def convert_float(x):
return (0 if x=="?" else float(x))

本文详细探讨了如何运用Python和Spark框架实现支持向量机(SVM)进行网页分类。首先,文章介绍了网页分类的基本概念,然后讲解了数据集的获取过程。通过结合Python和Spark的强大功能,实现高效且精准的网页分类算法。
最低0.47元/天 解锁文章
3384

被折叠的 条评论
为什么被折叠?



