C++--数据结构--最短路径--Dijkstra--Bellman-Ford算法--Floyd-Warshall算法--高阶0713 14

本文介绍了C++中三种求解最短路径的算法:Dijkstra算法、Bellman-Ford算法和Floyd-Warshall算法。Dijkstra算法适用于非负权图,而Bellman-Ford能处理负权边但效率较低,Floyd-Warshall则可找到任意两点间的最短路径。文中提供了详细的代码实现及测试结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

:本篇所用的某些未在本文中实现的函数,或不明确的类,均在上篇博客中有详细过程,因篇幅问题不再赘述。

C++--数据结构--图的相关概念及模拟实现--高阶0712_Gaze!的博客-优快云博客

 1. Dijkstra算法

Dijkstra算法需要开辟两个数组,vector<W>dist 和 vector<int>pPath。

dist存放当前所选定的顶点到其他顶点的距离

pPath存放的是从哪个节点来的,存的是该节点的下标


思路:

将全部顶点分为两个集合S和Q,S是已经确定了最短路径的集合,初始时为空即可。假设进行Dijkstra算法的起始顶点是src,其映射下标是srci,将dist[srci]=0。

每次选取路径最小的,即dist数组内最小的那个值,将dist下标(路径终点顶点)纳入S集合,用该节点再次更新dist数组


 

1.1 Dijkstra代码

void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)
{
	size_t srci = GetvertexIndex(src);
	size_t n = _vertexs.size();
	dist.resize(n, MAX_W);
	pPath.resize(n, -1);
	//将起始顶点到自己的距离置零
	dist[srci] = 0;
	pPath[srci] = srci;
	//S集合 一开始全部未使用
	vector<bool> S(n, false);
	for (size_t j = 0; j < n; j++)
	{
		int u = 0;
		W min = MAX_W;
		for (size_t i = 0; i < n; i++)
		{
			if (S[i] == false && dist[i] < min)
			{
				u = i;
				min = dist[i];
			}
		}
		//srci->u是最小的边 根据Dijkstra算法 我们把u纳入使用列表
		S[u] = true;
		//用u来尝试更新dist数组
		for (size_t t = 0; t < n; t++)
		{
		    if (S[t] == fals
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值