自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

代码:

import torch
import numpy as np
import torch.nn as nn
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# 定义数据:x_data 是特征,y_data 是标签(目标值)
data = [[-0.5, 7.7],
        [1.8, 98.5],
        [0.9, 57.8],
        [0.4, 39.2],
        [-1.4, -15.7],
        [-1.4, -37.3],
        [-1.8, -49.1],
        [1.5, 75.6],
        [0.4, 34.0],
        [0.8, 62.3]]

# 将数据转为 numpy 数组
data = np.array(data)

# 提取 x_data 和 y_data
x_data = data[:, 0]  # 取第一列作为输入特征
y_data = data[:, 1]  # 取第二列作为目标标签

# 将数据转换为 PyTorch 张量
x_train = torch.tensor(x_data, dtype=torch.float32)  # 输入特征
y_train = torch.tensor(y_data, dtype=torch.float32)  # 目标标签

# 使用 TensorDataset 来创建一个数据集
from torch.utils.data import DataLoader, TensorDataset

dataset = TensorDataset(x_train, y_train)  # 使用训练数据创建数据集
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)  # 将数据集转换为 DataL
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值