1. 线程同步概念
部分内容转自(线程同步 | 爱编程的大丙)
假设有4个线程A、B、C、D,当前一个线程A对内存中的共享资源进行访问的时候,其他线程B, C, D都不可以对这块内存进行操作,直到线程A对这块内存访问完毕为止,B,C,D中的一个才能访问这块内存,剩余的两个需要继续阻塞等待,以此类推,直至所有的线程都对这块内存操作完毕。
线程同步并不是多个线程同时对内存进行访问,而是按照先后顺序依次进行的。
1.1 为什么要同步
在研究线程同步之前,先来看一个两个线程交替数数(每个线程数50个数,交替数到100)的例子:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <pthread.h>
#define MAX 50
// 全局变量
int number;
// 线程处理函数
void* funcA_num(void* arg)
{
for(int i=0; i<MAX; ++i)
{
int cur = number;
cur++;
usleep(10);
number = cur;
printf("Thread A, id = %lu, number = %d\n", pthread_self(), number);
}
return NULL;
}
void* funcB_num(void* arg)
{
for(int i=0; i<MAX; ++i)
{
int cur = number;
cur++;
number = cur;
printf("Thread B, id = %lu, number = %d\n", pthread_self(), number);
usleep(5);
}
return NULL;
}
int main(int argc, const char* argv[])
{
pthread_t p1, p2;
// 创建两个子线程
pthread_create(&p1, NULL, funcA_num, NULL);
pthread_create(&p2, NULL, funcB_num, NULL);
// 阻塞,资源回收
pthread_join(p1, NULL);
pthread_join(p2, NULL);
return 0;
}
编译并执行上面的测试程序,得到如下结果:
$ ./a.out
Thread B, id = 140504473724672, number = 1
Thread B, id = 140504473724672, number = 2
Thread A, id = 140504482117376, number = 2
Thread B, id = 140504473724672, number = 3
Thread A, id = 140504482117376, number = 4
Thread B, id = 140504473724672, number = 5
Thread A, id = 140504482117376, number = 6
Thread B, id = 140504473724672, number = 7
Thread B, id = 140504473724672, number = 8
Thread A, id = 140504482117376, number = 7
Thread B, id = 140504473724672, number = 8
Thread B, id = 140504473724672, number = 9
Thread A, id = 140504482117376, number = 8
Thread B, id = 140504473724672, number = 9
Thread A, id = 140504482117376, number = 9
Thread B, id = 140504473724672, number = 10
Thread B, id = 140504473724672, number = 11
Thread A, id = 140504482117376, number = 10
Thread B, id = 140504473724672, number = 11
Thread A, id = 140504482117376, number = 11
Thread B, id = 140504473724672, number = 12
Thread A, id = 140504482117376, number = 13
Thread B, id = 140504473724672, number = 14
Thread A, id = 140504482117376, number = 15
通过对上面例子的测试,可以看出虽然每个线程内部循环了50次每次数一个数,但是最终没有数到100,通过输出的结果可以看到,有些数字被重复数了多次,其原因就是没有对线程进行同步处理,造成了数据的混乱。
两个线程在数数的时候需要分时复用CPU时间片,并且测试程序中调用了sleep()导致线程的CPU时间片没用完就被迫挂起了,这样就能让CPU的上下文切换(保存当前状态, 下一次继续运行的时候需要加载保存的状态)更加频繁,更容易再现数据混乱的这个现象。
CPU对应寄存器、一级缓存、二级缓存、三级缓存是独占的,用于存储处理的数据和线程的状态信息,数据被CPU处理完成需要再次被写入到物理内存中,物理内存数据也可以通过文件IO操作写入到磁盘中。
在测试程序中两个线程共用全局变量number当线程变成运行态之后开始数数,从物理内存加载数据,让后将数据放到CPU进行运算,最后将结果更新到物理内存中。
如果线程A执行这个过程期间就失去了CPU时间片,线程A被挂起了最新的数据没能更新到物理内存。线程B变成运行态之后从物理内存读数据,只能基于旧的数据往后数,然后失去CPU时间片挂起。线程A得到CPU时间片变成运行态,将上次没更新到内存的数据更新到内存,导致线程B已经更新到内存的数据被覆盖,最终导致有些数据会被重复数很多次。
1.2 同步方式
对于多个线程访问共享资源出现数据混乱的问题,需要进行线程同步。
常用的线程同步方式有四种:互斥锁、读写锁、条件变量、信号量。所谓的共享资源就是多个线程共同访问的变量,这些变量通常为全局数据区变量或者堆区变量,这些变量对应的共享资源也被称之为临界资源。
找到临界资源之后,再找和临界资源相关的上下文代码,这样就得到了一个代码块,这个代码块可以称之为临界区。确定好临界区(临界区越小越好)之后,就可以进行线程同步了,线程同步的大致处理思路是这样的:
Note
- 在临界区代码的上边,添加加锁函数,对临界区加锁。
- 当线程调用临界区代码,就会把这把锁锁上,其他线程就只能阻塞在锁上了。
- 在临界区代码的下边,添加解锁函数,对临界区解锁。
- 出临界区的线程会将锁定的那把锁打开,其他抢到锁的线程就可以进入到临界区了。
- 通过锁机制能保证临界区代码最多只能同时有一个线程访问,这样并行访问就变为串行访问了。
2. 互斥锁
2.1 互斥锁函数
互斥锁是线程同步最常用的一种方式,通过互斥锁可以锁定一个代码块, 被锁定的这个代码块, 所有的线程只能顺序执行(不能并行处理),这样多线程访问共享资源数据混乱的问题就可以被解决了,但是执行效率的降低,因为默认临界区多个线程是可以并行处理的,现在只能串行处理。
在Linux中互斥锁的类型为pthread_mutex_t,创建一个这种类型的变量就得到了一把互斥锁:
pthread_mutex_t mutex;
在创建的锁对象中保存了当前这把锁的状态信息:锁定还是打开,如果是锁定状态还记录了给这把锁加锁的线程信息(线程ID)。一个互斥锁变量只能被一个线程锁定,被锁定之后其他线程再对互斥锁变量加锁就会被阻塞,直到这把互斥锁被解锁,被阻塞的线程才能被解除阻塞。一般情况下,每一个共享资源对应一个把互斥锁,锁的个数和线程的个数无关。
Linux 提供的互斥锁操作函数如下,如果函数调用成功会返回0,调用失败会返回相应的错误号:
// 初始化互斥锁
// restrict: 是一个关键字, 用来修饰指针, 只有这个关键字修饰的指针可以访问指向的内存地址, 其他指针是不行的
int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);
// 释放互斥锁资源
int pthread_mutex_destroy(pthread_mutex_t *mutex);
Info
- 参数:
- mutex: 互斥锁变量的地址
- attr: 互斥锁的属性, 一般使用默认属性即可, 这个参数指定为NULL
// 修改互斥锁的状态, 将其设定为锁定状态, 这个状态被写入到参数 mutex 中
int pthread_mutex_lock(pthread_mutex_t *mutex);
这个函数被调用, 首先会判断参数 mutex 互斥锁中的状态是不是锁定状态:
- 没有被锁定, 是打开的, 这个线程可以加锁成功, 这个这个锁中会记录是哪个线程加锁成功了
- 如果被锁定了, 其他线程加锁都会阻塞在这把锁上
- 当这把锁被解开之后, 这些阻塞在锁上的线程就解除阻塞了,并且这些线程是通过竞争的方式对这把锁加锁,没抢到锁的线程继续阻塞
// 尝试加锁
int pthread_mutex_trylock(pthread_mutex_t *mutex);
调用这个函数对互斥锁变量加锁还是有两种情况:
- 如果这把锁没有被锁定是打开的,线程加锁成功
- 如果锁变量被锁住了,调用pthread_mutex_trylock加锁的线程,不会被阻塞,加锁失败直接返回错误号
// 对互斥锁解锁
int pthread_mutex_unlock(pthread_mutex_t *mutex);
不是所有的线程都可以对互斥锁解锁,哪个线程加的锁, 哪个线程才能解锁成功。
2.1 互斥锁使用
两个线程使用互斥锁进行线程同步操作同一个全局变量,控制这两个线程。
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <pthread.h>
#define MAX 100
// 全局变量
int number;
// 创建一把互斥锁
// 全局变量, 多个线程共享
pthread_mutex_t mutex;
// 线程处理函数
void* funcA_num(void* arg)
{
for(int i=0; i<MAX; ++i)
{
// 如果线程A加锁成功, 不阻塞
// 如果B加锁成功, 线程A阻塞
pthread_mutex_lock(&mutex);
int cur = number;
cur++;
usleep(10);
number = cur;
pthread_mutex_unlock(&mutex);
printf("Thread A, id = %lu, number = %d\n", pthread_self(), number);
}
return NULL;
}
void* funcB_num(void* arg)
{
for(int i=0; i<MAX; ++i)
{
// a加锁成功, b线程访问这把锁的时候是锁定的
// 线程B先阻塞, a线程解锁之后阻塞解除
// 线程B加锁成功了
pthread_mutex_lock(&mutex);
int cur = number;
cur++;
number = cur;
pthread_mutex_unlock(&mutex);
printf("Thread B, id = %lu, number = %d\n", pthread_self(), number);
usleep(5);
}
return NULL;
}
int main(int argc, const char* argv[])
{
pthread_t p1, p2;
// 初始化互斥锁
pthread_mutex_init(&mutex, NULL);
// 创建两个子线程
pthread_create(&p1, NULL, funcA_num, NULL);
pthread_create(&p2, NULL, funcB_num, NULL);
// 阻塞,资源回收
pthread_join(p1, NULL);
pthread_join(p2, NULL);
// 销毁互斥锁
// 线程销毁之后, 再去释放互斥锁
pthread_mutex_destroy(&mutex);
return 0;
}
3. 死锁
当多个线程访问共享资源, 需要加锁, 如果锁使用不当, 就会造成死锁这种现象。如果线程死锁造成的后果是:所有的线程都被阻塞,并且线程的阻塞是无法解开的(因为可以解锁的线程也被阻塞了)。
造成死锁的场景有如下几种:
加锁之后忘记解锁
// 场景1
void func()
{
for(int i=0; i<6; ++i)
{
// 当前线程A加锁成功, 当前循环完毕没有解锁, 在下一轮循环的时候自己被阻塞了
// 其余的线程也被阻塞
pthread_mutex_lock(&mutex);
....
.....
// 忘记解锁
}
}
// 场景2
void func()
{
for(int i=0; i<6; ++i)
{
// 当前线程A加锁成功
// 其余的线程被阻塞
pthread_mutex_lock(&mutex);
....
.....
if(xxx)
{
// 函数退出, 没有解锁(解锁函数无法被执行了)
return ;
}
pthread_mutex_lock(&mutex);
}
}
重复加锁, 造成死锁
void func()
{
for(int i=0; i<6; ++i)
{
// 当前线程A加锁成功
// 其余的线程阻塞
pthread_mutex_lock(&mutex);
// 锁被锁住了, A线程阻塞
pthread_mutex_lock(&mutex);
....
.....
pthread_mutex_unlock(&mutex);
}
}
// 隐藏的比较深的情况
void funcA()
{
for(int i=0; i<6; ++i)
{
// 当前线程A加锁成功
// 其余的线程阻塞
pthread_mutex_lock(&mutex);
....
.....
pthread_mutex_unlock(&mutex);
}
}
void funcB()
{
for(int i=0; i<6; ++i)
{
// 当前线程A加锁成功
// 其余的线程阻塞
pthread_mutex_lock(&mutex);
funcA(); // 重复加锁
....
.....
pthread_mutex_unlock(&mutex);
}
}
在程序中有多个共享资源, 因此有很多把锁,随意加锁,导致相互被阻塞
Note
场景描述:
- 有两个共享资源:X, Y,X对应锁A, Y对应锁B
- 线程A访问资源X, 加锁A
- 线程B访问资源Y, 加锁B
- 线程A要访问资源Y, 线程B要访问资源X,因为资源X和Y已经被对应的锁锁住了,因此这个两个线程被阻塞
- 线程A被锁B阻塞了, 无法打开A锁
- 线程B被锁A阻塞了, 无法打开B锁
在使用多线程编程的避免死锁:
- 避免多次锁定, 多检查
- 对共享资源访问完毕之后, 一定要解锁,或者在加锁的使用 trylock
- 如果程序中有多把锁, 可以控制对锁的访问顺序(顺序访问共享资源,但在有些情况下是做不到的),另外也可以在对其他互斥锁做加锁操作之前,先释放当前线程拥有的互斥锁。
- 项目程序中可以引入一些专门用于死锁检测的模块
4. 读写锁
4.1 读写锁函数
读写锁是互斥锁的升级版, 在做读操作的时候可以提高程序的执行效率,如果所有的线程都是做读操作, 那么读是并行的,但是使用互斥锁,读操作也是串行的。
读写锁是一把锁,锁的类型为pthread_rwlock_t,有了类型之后就可以创建一把互斥锁了:
pthread_rwlock_t rwlock;
读写锁:既可以锁定读操作,也可以锁定写操作。
锁中记录了这些信息:
- 锁的状态: 锁定/打开
- 锁定的是操作: 读操作/写操作,使用读写锁锁定了读操作,需要先解锁才能去锁定写操作,反之亦然。
- 哪个线程将这把锁锁上了
读写锁的使用方式也互斥锁的使用方式是完全相同的:找共享资源, 确定临界区,在临界区的开始位置加锁(读锁/写锁),临界区的结束位置解锁。
因为通过一把读写锁可以锁定读或者写操作,下面介绍一下关于读写锁的特点:
- 使用读写锁的读锁锁定了临界区,线程对临界区的访问是并行的,读锁是共享的。
- 使用读写锁的写锁锁定了临界区,线程对临界区的访问是串行的,写锁是独占的。
- 使用读写锁分别对两个临界区加了读锁和写锁,两个线程要同时访问者两个临界区,访问写锁临界区的线程继续运行,访问读锁临界区的线程阻塞,因为写锁比读锁的优先级高。
如果说程序中所有的线程都对共享资源做写操作,使用读写锁没有优势,和互斥锁是一样的,如果说程序中所有的线程都对共享资源有写也有读操作,并且对共享资源读的操作越多,读写锁更有优势。
Linux提供的读写锁操作函数原型如下,如果函数调用成功返回0,失败返回对应的错误号:
#include <pthread.h>
pthread_rwlock_t rwlock;
// 初始化读写锁
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,
const pthread_rwlockattr_t *restrict attr);
// 释放读写锁占用的系统资源
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
参数:
- rwlock: 读写锁的地址,传出参数
- attr: 读写锁属性,一般使用默认属性,指定为NULL
// 在程序中对读写锁加读锁, 锁定的是读操作
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
调用这个函数,如果读写锁是打开的,那么加锁成功;如果读写锁已经锁定了读操作,调用这个函数依然可以加锁成功,因为读锁是共享的;如果读写锁已经锁定了写操作,调用这个函数的线程会被阻塞。
// 这个函数可以有效的避免死锁
// 如果加读锁失败, 不会阻塞当前线程, 直接返回错误号
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
调用这个函数,如果读写锁是打开的,那么加锁成功;如果读写锁已经锁定了读操作,调用这个函数依然可以加锁成功,因为读锁是共享的;如果读写锁已经锁定了写操作,调用这个函数加锁失败,对应的线程不会被阻塞,可以在程序中对函数返回值进行判断,添加加锁失败之后的处理动作。
// 在程序中对读写锁加写锁, 锁定的是写操作
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
调用这个函数,如果读写锁是打开的,那么加锁成功;如果读写锁已经锁定了读操作或者锁定了写操作,调用这个函数的线程会被阻塞。
// 这个函数可以有效的避免死锁
// 如果加写锁失败, 不会阻塞当前线程, 直接返回错误号
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
调用这个函数,如果读写锁是打开的,那么加锁成功;如果读写锁已经锁定了读操作或者锁定了写操作,调用这个函数加锁失败,但是线程不会阻塞,可以在程序中对函数返回值进行判断,添加加锁失败之后的处理动作。
// 解锁, 不管锁定了读还是写都可用解锁
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
4.2 读写锁使用
题目要求:8个线程操作同一个全局变量,3个线程不定时写同一全局资源,5个线程不定时读同一全局资源。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
// 全局变量
int number = 0;
// 定义读写锁
pthread_rwlock_t rwlock;
// 写的线程的处理函数
void* writeNum(void* arg)
{
while(1)
{
pthread_rwlock_wrlock(&rwlock);
int cur = number;
cur ++;
number = cur;
printf("++写操作完毕, number : %d, tid = %ld\n", number, pthread_self());
pthread_rwlock_unlock(&rwlock);
// 添加sleep目的是要看到多个线程交替工作
usleep(rand() % 100);
}
return NULL;
}
// 读线程的处理函数
// 多个线程可以如果处理动作相同, 可以使用相同的处理函数
// 每个线程中的栈资源是独享
void* readNum(void* arg)
{
while(1)
{
pthread_rwlock_rdlock(&rwlock);
printf("--全局变量number = %d, tid = %ld\n", number, pthread_self());
pthread_rwlock_unlock(&rwlock);
usleep(rand() % 100);
}
return NULL;
}
int main()
{
// 初始化读写锁
pthread_rwlock_init(&rwlock, NULL);
// 3个写线程, 5个读的线程
pthread_t wtid[3];
pthread_t rtid[5];
for(int i=0; i<3; ++i)
{
pthread_create(&wtid[i], NULL, writeNum, NULL);
}
for(int i=0; i<5; ++i)
{
pthread_create(&rtid[i], NULL, readNum, NULL);
}
// 释放资源
for(int i=0; i<3; ++i)
{
pthread_join(wtid[i], NULL);
}
for(int i=0; i<5; ++i)
{
pthread_join(rtid[i], NULL);
}
// 销毁读写锁
pthread_rwlock_destroy(&rwlock);
return 0;
}
3. 条件变量
3.1 条件变量函数
严格意义上来说,条件变量的主要作用不是处理线程同步, 而是进行线程的阻塞。如果在多线程程序中只使用条件变量无法实现线程的同步, 必须要配合互斥锁来使用。
Note
条件变量和互斥锁都能阻塞线程,但是二者的效果是不一样的,二者的区别如下:
- 假设有A-Z 26个线程,这26个线程共同访问同一把互斥锁,如果线程A加锁成功,那么其余B-Z线程访问互斥锁都阻塞,所有的线程只能顺序访问临界区
- 条件变量只有在满足指定条件下才会阻塞线程,如果条件不满足,多个线程可以同时进入临界区,同时读写临界资源,这种情况下还是会出现共享资源中数据的混乱。
一般情况下条件变量用于处理生产者和消费者模型,并且和互斥锁配合使用。条件变量类型对应的类型为pthread_cond_t,这样就可以定义一个条件变量类型的变量了:
pthread_cond_t cond;
被条件变量阻塞的线程的线程信息会被记录到这个变量中,以便在解除阻塞的时候使用。
条件变量操作函数函数原型如下:
#include <pthread.h>
pthread_cond_t cond;
// 初始化
int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);
// 销毁释放资源
int pthread_cond_destroy(pthread_cond_t *cond);
Info
参数:
- cond: 条件变量的地址
- attr: 条件变量属性, 一般使用默认属性, 指定为NULL
// 线程阻塞函数, 哪个线程调用这个函数, 哪个线程就会被阻塞
int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex);
Note
通过函数原型可以看出,该函数在阻塞线程的时候,需要一个互斥锁参数,这个互斥锁主要功能是进行线程同步,让线程顺序进入临界区,避免出现数共享资源的数据混乱。该函数会对这个互斥锁做以下几件事情:
- 在阻塞线程时候,如果线程已经对互斥锁mutex上锁,那么会将这把锁打开,这样做是为了避免死锁
- 当线程解除阻塞的时候,函数内部会帮助这个线程再次将这个mutex互斥锁锁上,继续向下访问临界区
// 表示的时间是从1971.1.1到某个时间点的时间, 总长度使用秒/纳秒表示
struct timespec {
time_t tv_sec; /* Seconds */1
long tv_nsec; /* Nanoseconds [0 .. 999999999] */
};
// 将线程阻塞一定的时间长度, 时间到达之后, 线程就解除阻塞了
int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex, const struct timespec *restrict abstime);
这个函数的前两个参数和pthread_cond_wait函数是一样的,第三个参数表示线程阻塞的时长,但是需要额外注意一点:struct timespec这个结构体中记录的时间是从1971.1.1到某个时间点的时间,总长度使用秒/纳秒表示。因此赋值方式相对要麻烦一点:
time_t mytim = time(NULL); // 1970.1.1 0:0:0 到当前的总秒数
struct timespec tmsp;
tmsp.tv_nsec = 0;
tmsp.tv_sec = time(NULL) + 100; // 线程阻塞100s
// 唤醒阻塞在条件变量上的线程, 至少有一个被解除阻塞
int pthread_cond_signal(pthread_cond_t *cond);
// 唤醒阻塞在条件变量上的线程, 被阻塞的线程全部解除阻塞
int pthread_cond_broadcast(pthread_cond_t *cond);
调用上面两个函数中的任意一个,都可以换线被pthread_cond_wait或者pthread_cond_timedwait阻塞的线程,区别就在于pthread_cond_signal是唤醒至少一个被阻塞的线程(总个数不定),pthread_cond_broadcast是唤醒所有被阻塞的线程。
5.2 生产者和消费者
Note
生产者和消费者模型的组成:
- 生产者线程 -> 若干个
- 生产商品或者任务放入到任务队列中
- 任务队列满了就阻塞, 不满的时候就工作
- 通过一个生产者的条件变量控制生产者线程阻塞和非阻塞
- 消费者线程 -> 若干个
- 读任务队列, 将任务或者数据取出
- 任务队列中有数据就消费,没有数据就阻塞
- 通过一个消费者的条件变量控制消费者线程阻塞和非阻塞
- 队列 -> 存储任务/数据,对应一块内存,为了读写访问可以通过一个数据结构维护这块内存
- 可以是数组、链表,也可以使用stl容器:queue / stack / list / vector

场景描述:使用条件变量实现生产者和消费者模型,生产者有5个,往链表头部添加节点,消费者也有5个,删除链表头部的节点。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
// 链表的节点
struct Node
{
int number;
struct Node* next;
};
// 定义条件变量, 控制消费者线程
pthread_cond_t cond;
// 互斥锁变量
pthread_mutex_t mutex;
// 指向头结点的指针,代表链表是空的
struct Node * head = NULL;
// 生产者的回调函数
void* producer(void* arg)
{
// 一直生产
while(1)
{
pthread_mutex_lock(&mutex);
// 创建一个链表的新节点
struct Node* pnew = (struct Node*)malloc(sizeof(struct Node));
// 节点初始化
pnew->number = rand() % 1000;
// 节点的连接, 添加到链表的头部, 新节点就新的头结点
pnew->next = NULL;
// head指针前移
head = pnew;
printf("+++producer, number = %d, tid = %ld\n", pnew->number, pthread_self());
pthread_mutex_unlock(&mutex);
// 生产了任务, 通知消费者消费
pthread_cond_broadcast(&cond);
// 生产慢一点
sleep(rand() % 3);
}
return NULL;
}
// 消费者的回调函数
void* consumer(void* arg)
{
while(1)
{
pthread_mutex_lock(&mutex);
// 一直消费, 删除链表中的一个节点
// if(head == NULL) // 这样写有bug
while(head == NULL)
{
// 任务队列, 也就是链表中已经没有节点可以消费了
// 消费者线程需要阻塞
// 线程加互斥锁成功, 但是线程阻塞在这行代码上, 锁还没解开
// 其他线程在访问这把锁的时候也会阻塞, 生产者也会阻塞 ==> 死锁
// 这函数会自动将线程拥有的锁解开
pthread_cond_wait(&cond, &mutex);
// 当消费者线程解除阻塞之后, 会自动将这把锁锁上,释放互斥锁,使得其他线程能够使用这个互斥锁
// 这时候当前这个线程又重新拥有了这把互斥锁
}
// 取出链表的头结点, 将其删除
struct Node* pnode = head;
printf("--consumer: number: %d, tid = %ld\n", pnode->number, pthread_self());
head = pnode->next;
free(pnode);
pthread_mutex_unlock(&mutex);
sleep(rand() % 3);
}
return NULL;
}
int main()
{
// 初始化条件变量
pthread_cond_init(&cond, NULL);
pthread_mutex_init(&mutex, NULL);
// 创建5个生产者, 5个消费者
pthread_t ptid[5];
pthread_t ctid[5];
for(int i=0; i<5; ++i)
{
pthread_create(&ptid[i], NULL, producer, NULL);
}
for(int i=0; i<5; ++i)
{
pthread_create(&ctid[i], NULL, consumer, NULL);
}
// 释放资源
for(int i=0; i<5; ++i)
{
// 阻塞等待子线程退出
pthread_join(ptid[i], NULL);
}
for(int i=0; i<5; ++i)
{
pthread_join(ctid[i], NULL);
}
// 销毁条件变量
pthread_cond_destroy(&cond);
pthread_mutex_destroy(&mutex);
return 0;
}
Question
如果生产者一个数据,一个消费者消费数据,其他消费者线程都在pthread_cond_wait,那当生产者生产了下一个数据的时候,同时解除阻塞,那是不是会进入混乱?
代码分析
void* consumer(void* arg)
{
while(1)
{
pthread_mutex_lock(&mutex);
// 一直消费, 删除链表中的一个节点
//`pthread_cond_wait` 时,通常建议使用 `while` 而不是 `if` 来检查条件
//发生“虚假唤醒”(spurious wakeups)
if(head == NULL) // 这样写有bug
{
pthread_cond_wait(&cond, &mutex);
}
// 取出链表的头结点, 将其删除
struct Node* pnode = head;
printf("--consumer: number: %d, tid = %ld\n", pnode->number, pthread_self());
head = pnode->next;
free(pnode);
pthread_mutex_unlock(&mutex);
sleep(rand() % 3);
}
return NULL;
}
Warning
为什么在第7行使用if 有bug:
当任务队列为空, 所有的消费者线程都会被这个函数阻塞 pthread_cond_wait(&cond, &mutex);
也就是阻塞在代码的第9行
当生产者生产了1个节点, 调用 pthread_cond_broadcast(&cond); 唤醒了所有阻塞的线程
- 有一个消费者线程通过 pthread_cond_wait()加锁成功, 其余没有加锁成功的线程继续阻塞
- 加锁成功的线程向下运行, 并成功删除一个节点, 然后解锁
- 没有加锁成功的线程解除阻塞继续抢这把锁, 另外一个子线程加锁成功
- 但是这个线程删除链表节点的时候链表已经为空了, 后边访问这个空节点的时候就会出现段错误
解决方案: - 需要循环的对链表是否为空进行判断, 需要将if 该成 while
6. 信号量
6.1 信号量函数
Note
信号量(Semaphore)是一种广泛使用的同步机制,用于控制对共享资源的访问,主 要在操作系统和并发编程领域中得到应用。信号量是由Edsger Dijkstra在1960年代提 出的,用来解决多个进程或线程间的同步与互斥问题。 与共享存储等不同,在Linux中,信号量是用来协调进程或线程的执行的,并不承担 传输数据的职责。
信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作。信号量不一定是锁定某一个资源,而是流程上的概念,比如:有A,B两个线程,B线程要等A线程完成某一任务以后再进行自己下面的步骤,这个任务并不一定是锁定某一资源,还可以是进行一些计算或者数据处理之类。
信号量(信号灯)与互斥锁和条件变量的主要不同在于”灯”的概念,灯亮则意味着资源可用,灯灭则意味着不可用。信号量主要阻塞线程, 不能完全保证线程安全,如果要保证线程安全, 需要信号量和互斥锁一起使用。
信号量和条件变量一样用于处理生产者和消费者模型,用于阻塞生产者线程或者消费者线程的运行。信号的类型为sem_t对应的头文件为<semaphore.h>:
#include <semaphore.h>
sem_t sem;
Linux提供的信号量操作函数原型如下:
#include <semaphore.h>
// 初始化信号量/信号灯
int sem_init(sem_t *sem, int pshared, unsigned int value);
// 资源释放, 线程销毁之后调用这个函数即可
// 参数 sem 就是 sem_init() 的第一个参数
int sem_destroy(sem_t *sem);
参数:
sem:信号量变量地址
pshared:
0:线程同步
非0:进程同步
value:初始化当前信号量拥有的资源数(>=0),如果资源数为0,线程就会被阻塞了。
// 参数 sem 就是 sem_init() 的第一个参数
// 函数被调用sem中的资源就会被消耗1个, 资源数-1
int sem_wait(sem_t *sem);
当线程调用这个函数,并且sem中的资源数>0,线程不会阻塞,线程会占用sem中的一个资源,因此资源数-1,直到sem中的资源数减为0时,资源被耗尽,因此线程也就被阻塞了。
// 参数 sem 就是 sem_init() 的第一个参数
// 函数被调用sem中的资源就会被消耗1个, 资源数-1
int sem_trywait(sem_t *sem);
当线程调用这个函数,sem中的资源数>0,线程不会阻塞,线程会占用sem中的一个资源,因此资源数-1,直到sem中的资源数减为0时,资源被耗尽,但是线程不会被阻塞,直接返回错误号,因此可以在程序中添加判断分支,用于处理获取资源失败之后的情况。
// 表示的时间是从1971.1.1到某个时间点的时间, 总长度使用秒/纳秒表示
struct timespec {
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds [0 .. 999999999] */
};
// 调用该函数线程获取sem中的一个资源,当资源数为0时,线程阻塞,在阻塞abs_timeout对应的时长之后,解除阻塞。
// abs_timeout: 阻塞的时间长度, 单位是s, 是从1970.1.1开始计算的
int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
该函数的参数abs_timeout和pthread_cond_timedwait的最后一个参数是一样的,使用方法不再过多赘述。当线程调用这个函数,并且sem中的资源数>0,线程不会阻塞,线程会占用sem中的一个资源,因此资源数-1,直到sem中的资源数减为0时,资源被耗尽,线程被阻塞,当阻塞指定的时长之后,线程解除阻塞。
// 调用该函数给sem中的资源数+1
int sem_post(sem_t *sem);
调用该函数会将sem中的资源数+1,在线程调用sem_wait、sem_trywait、sem_timedwait时因为sem中的资源数为0被阻塞了,sem_post将这些线程会解除阻塞获取到资源继续向下运行。
// 查看信号量 sem 中的整形数的当前值, 这个值会被写入到sval指针对应的内存中
// sval是一个传出参数
int sem_getvalue(sem_t *sem, int *sval);
查看sem中现在拥有的资源个数,通过第二个参数sval将数据传出。
6.1.1信号量的补充
1)基本概念:
信号量本质上是一个非负整数变量,可以被用来控制对共享资源的访问。它主要用于 两种目的:互斥和同步。
- 互斥(Mutex):确保多个进程或线程不会同时访问临界区(即访问共享资源的 代码区域)。
- 同步(Synchronization):协调多个进程或线程的执行顺序,确保它们按照一定的顺序执行。
2)基于用途的分类
基于不同的目的,信号量可以分为两类:用于实现互斥的“二进制信号量”和用于同 步的“计数信号量”。 - 二进制信号量(或称作互斥锁):其值只能是0或1,主要用于实现互斥,即一 次只允许一个线程进入临界区。通常用于控制共享资源的访问,避免竞态条件的产生。
- 计数信号量:其值可以是任意非负整数,表示可用资源的数量。计数信号量允许多个线程根据可用资源的数量进入临界区。通常用于控制不同进程或线程执行的顺序,如 消费者必须在生产者发送数据后才可以消费。
3)基于名称的分类
在Linux 中,根据是否具有唯一的名称,分为有名信号量(named semaphore)和无 名信号量(unnamed semaphore)。 - 无名信号量 无名信号量不是通过名称标识,而是直接通过sem_t结构的内存位置标识。无名信号 量在使用前需要初始化,在不再需要时应该销毁。它们不需要像有名信号量那样进行创建 和链接,因此设置起来更快,运行效率也更高。
- 有名信号量 有名信号量在系统范围内是可见的,可以在任意进程之间进行通信。它们通过名字唯 一标识,这使得不同的进程可以通过这个名字访问同一个信号量对象。 在当前Linux系统中,有名信号量在临时文件系统中的对应文件位于/dev/shm目录 下,创建它们时可以像普通文件一样设置权限模式,限制不同用户的访问权限。
4)操作信号量主要提供了两个操作:P操作和V操作。 - P 操作(Proberen,尝试):也称为等待操作(wait),用于减少信号量的值。 如果信号量的值大于0,它就减1并继续执行;如果信号量的值为0,则进程或线程阻塞, 直到信号量的值变为非零。
- V 操作(Verhogen,增加):也称为信号操作(signal),用于增加信号量的值。 如果有其他进程或线程因信号量的值为0而阻塞,这个操作可能会唤醒它们。
6.1.2 两种信号量的使用
1.无名信号量:
(1)sem_init()
include<semaphore.h>
/@brief 在sem指向的地址初始化一个无名信号量。
@param sem 信号量地址
@param pshared 指明信号量是线程间共享还是进程间共享的
- 0: 信号量是线程间共享的,应该被置于所有线程均可见的地址(如,全局变量或在堆 中动态分配的变量)
- 非0: 信号量是进程间共享的,应该被置于共享内存区域,任何进程只要能访问共享内 存区域,即可操作进程间共享的信号量
@param value 信号量的初始值
@return int 成功返回0,失败返回-1,同时errno被设置以记录错误信息 */
int sem_init(sem_t *sem, int pshared, unsigned int value);
(2)sem_destroy()
#include<semaphore.h>
int sem_destroy(sem_t *sem);
*@brief 销毁sem指向的无名信号量
*@param sem 无名信号量
*@return int 成功返回0,失败返回-1,并设置errno指示错误原因
(3)sem_post()
#include<semaphore.h>
int sem_post(sem_t *sem);;
/ @brief 将sem指向的信号量加一,如果信号量从0变为1,且其他进程或线程因信号 量而阻塞,则阻塞的进程或线程会被唤醒并获取信号量,然后继续执行。POSIX标准并未明确定义唤醒策略,具体唤醒的是哪个进程或线程取决于操作系统的调度策略。
*@param sem 信号量指针
*@return int 成功返回0,失败则信号量的值未被修改,返回-1,并设置errno以指 明错误原因 /
(4)sem_wait()
int sem_wait(sem_t *sem);
@param sem 信号量指针
@return int 成功返回0,失败则信号量的值保持不变,返回-1,并设置errno以指 明错误原因
Tip
无名信号量实际上可以用于任意进程间的通信,而不仅限于父子 进程。在非父子进程通信时,共享资源的初始化和释放要格外注意,必须按照合理的顺序进行。
rand 函数用于生成伪随机数,而 srand 函数用于设置随机数种子,通过合理使用这两个函数,可以生成满足需求的随机数。```
int rand(void);
int srand(unsigned int seed);
6.1.2有名信号
有名信号量具有一个唯一的名称,通常以 / 开头,例如 /my_semaphore。可以通过名称在不同的进程间共享同一个信号量。这使得有名信号量非常适合进程间的同步。
(1)sem_open()
#include <fcntl.h> /* For O_* constants */
#include <sys/stat.h> /* For mode constants */
#include <semaphore.h>
* @brief 创建或打开一个已存在的POSIX有名信号量。
* @param name 信号量的名称
* @param oflag 标记位,控制调用函数的行为。是一个或多个值或操作的结果。常用的是O_CREAT。
O_CREAT: 如果信号量不存在则创建,指定了这个标记,必须提供mode和value
- @param mode 有名信号量在临时文件系统中对应文件的权限。需要注意的是,应确保 每个需要访问当前有名信号量的进程都可以获得读写权限。
- @param value 信号量的初始值
* @return sem_t* 成功则返回创建的有名信号量的地址,失败则返回SEM_FAILED, 同时设置errno以指出错误原因
sem_t *sem_open(const char *name, int oflag, mode_t mode, unsigned int value);
sem_t *sem_open(const char *name, int oflag);
(2)sem_close()
#include <semaphore.h>
*@brief 关闭对于sem指向的有名信号量的引用,每个打开了有名信号量的进程在结 束时都应该关闭引用
*@param sem 有名信号量指针
*@return int 成功返回0,失败返回-1,并设置errno以指明错误原因
int sem_close(sem_t *sem);
(3)sem_unlink()
#include <semaphore.h>
*@brief 移除内存中的有名信号量对象,/dev/shm下的有名信号量文件会被清除。当 没有任何进程引用该对象时才会执行清除操作。只应该执行一次。
*@param name 有名信号量的名称
*@return int 成功返回0,失败返回-1,并设置errno以指明错误原因
int sem_close(sem_t *sem);
Note
信号量的总结
- 进程间与线程间通信:
- 通常用于进程间通信的方式,也可以用于线程间通信。
- 信号量不仅适用于进程间同步,还可以用于线程间同步。 - 无名信号量与有名信号量:
- 有名信号量:通过唯一的信号量名称标识,在操作系统中有唯一标识,适用于进程间通信。
- 无名信号量:用于进程间通信时,信号量必须存储在共享的内存区域内,进程通过内存地址直接访问这些信号量。
- 二进制信号量与计数信号量:
- 二进制信号量:用于互斥,通常充当互斥锁,确保资源的互斥访问。
- 计数信号量:用于控制进程或线程的执行顺序,值的范围可以大于1,用于协调多个进程的顺序。
- 信号量的功能:
- 信号量用于协调多个进程或线程的工作,确保共享资源的安全访问。它并不用于数据传输,主要用于进程或线程之间的同步。
- 使用场景:
- 进程间通信:通常选择有名信号量,因为它通过信号量名称在操作系统中标识,便于跨进程访问。
- 线程间通信:一般选择无名信号量,因其在同一进程内的线程间使用更加高效。
- 资源管理:
- 在使用信号量进行跨进程通信时,需要特别注意资源的创建和释放顺序,避免资源泄漏或在错误时机释放资源导致未定义的行为。
- 错误处理:
- 在生产环境中,应充分补充错误处理机制,根据函数的返回值进行检查,使用
perror或类似机制及时输出错误日志,帮助快速定位问题。 - 还应确保在程序结束时适当释放资源,以避免内存泄漏和其他不必要的资源占用。
- 在生产环境中,应充分补充错误处理机制,根据函数的返回值进行检查,使用
- 代码简洁与错误处理的平衡:
- 在实际开发中,通常为了简洁代码结构,可以省略某些错误处理步骤。但在生产环境中,应当补充完整的错误处理逻辑,保证系统的健壮性和高效运行。
6.2 生产者和消费者
由于生产者和消费者是两类线程,并且在还没有生成之前是不能进行消费的,在使用信号量处理这类问题的时候可以定义两个信号量,分别用于记录生产者和消费者线程拥有的总资源数。
// 生产者线程
sem_t psem;
// 消费者线程
sem_t csem;
// 信号量初始化
sem_init(&psem, 0, 5); // 5个生产者可以同时生产
sem_init(&csem, 0, 0); // 消费者线程没有资源, 因此不能消费
// 生产者线程
// 在生产之前, 从信号量中取出一个资源
sem_wait(&psem);
// 生产者商品代码, 有商品了, 放到任务队列
......
......
......
// 通知消费者消费,给消费者信号量添加资源,让消费者解除阻塞
sem_post(&csem);
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// 消费者线程
// 消费者需要等待生产, 默认启动之后应该阻塞
sem_wait(&csem);
// 开始消费
......
......
......
// 消费完成, 通过生产者生产,给生产者信号量添加资源
sem_post(&psem);
通过上面的代码可以知道,初始化信号量的时候没有消费者分配资源,消费者线程启动之后由于没有资源自然就被阻塞了,等生产者生产出产品之后,再给消费者分配资源,这样二者就可以配合着完成生产和消费流程了。
6.3 信号量使用
场景描述:使用信号量实现生产者和消费者模型,生产者有5个,往链表头部添加节点,消费者也有5个,删除链表头部的节点。
6.3.1 总资源数为1
如果生产者和消费者线程使用的信号量对应的总资源数为1,那么不管线程有多少个,可以工作的线程只有一个,其余线程由于拿不到资源,都被迫阻塞了。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <semaphore.h>
#include <pthread.h>
// 链表的节点
struct Node
{
int number;
struct Node* next;
};
// 生产者线程信号量
sem_t psem;
// 消费者线程信号量
sem_t csem;
// 互斥锁变量
pthread_mutex_t mutex;
// 指向头结点的指针
struct Node * head = NULL;
// 生产者的回调函数
void* producer(void* arg)
{
// 一直生产
while(1)
{
// 生产者拿一个信号灯
sem_wait(&psem);
// 创建一个链表的新节点
struct Node* pnew = (struct Node*)malloc(sizeof(struct Node));
// 节点初始化
pnew->number = rand() % 1000;
// 节点的连接, 添加到链表的头部, 新节点就新的头结点
pnew->next = head;
// head指针前移
head = pnew;
printf("+++producer, number = %d, tid = %ld\n", pnew->number, pthread_self());
// 通知消费者消费, 给消费者加信号灯
sem_post(&csem);
// 生产慢一点
sleep(rand() % 3);
}
return NULL;
}
// 消费者的回调函数
void* consumer(void* arg)
{
while(1)
{
sem_wait(&csem);
// 取出链表的头结点, 将其删除
struct Node* pnode = head;
printf("--consumer: number: %d, tid = %ld\n", pnode->number, pthread_self());
head = pnode->next;
free(pnode);
// 通知生产者生成, 给生产者加信号灯
sem_post(&psem);
sleep(rand() % 3);
}
return NULL;
}
int main()
{
// 初始化信号量
// 生产者和消费者拥有的信号灯的总和为1
sem_init(&psem, 0, 1); // 生成者线程一共有1个信号灯
sem_init(&csem, 0, 0); // 消费者线程一共有0个信号灯
// 创建5个生产者, 5个消费者
pthread_t ptid[5];
pthread_t ctid[5];
for(int i=0; i<5; ++i)
{
pthread_create(&ptid[i], NULL, producer, NULL);
}
for(int i=0; i<5; ++i)
{
pthread_create(&ctid[i], NULL, consumer, NULL);
}
// 释放资源
for(int i=0; i<5; ++i)
{
pthread_join(ptid[i], NULL);
}
for(int i=0; i<5; ++i)
{
pthread_join(ctid[i], NULL);
}
sem_destroy(&psem);
sem_destroy(&csem);
return 0;
}
通过测试代码可以得到如下结论:如果生产者和消费者使用的信号量总资源数为1,那么不会出现生产者线程和消费者线程同时访问共享资源的情况,不管生产者和消费者线程有多少个,它们都是顺序执行的。
6.3.2 总资源数大于1
Note
如果生产者和消费者线程使用的信号量对应的总资源数为大于1,这种场景下出现的情况就比较多了:
- 多个生产者线程同时生产
- 多个消费者同时消费
- 生产者线程和消费者线程同时生产和消费
以上不管哪一种情况都可能会出现多个线程访问共享资源的情况,如果想防止共享资源出现数据混乱,那么就需要使用互斥锁进行线程同步,处理代码如下:
Question
一组消费者生产者:
生产者减少信号灯(互锁)-> 生产数据 -> 给消费者点灯(解除互锁) -> 消费者减少信号灯(互锁)-> 消费数据 -> 给生产者点灯(解除互锁)
但是不同组的消费者生产者如何同时访问临界区?
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <semaphore.h>
#include <pthread.h>
// 链表的节点
struct Node
{
int number;
struct Node* next;
};
// 生产者线程信号量
sem_t psem;
// 消费者线程信号量
sem_t csem;
// 互斥锁变量
pthread_mutex_t mutex;
// 指向头结点的指针
struct Node * head = NULL;
// 生产者的回调函数
void* producer(void* arg)
{
// 一直生产
while(1)
{
// 生产者拿一个信号灯
sem_wait(&psem);
// 加锁, 这句代码放到 sem_wait()上边, 有可能会造成死锁
pthread_mutex_lock(&mutex);
// 创建一个链表的新节点
struct Node* pnew = (struct Node*)malloc(sizeof(struct Node));
// 节点初始化
pnew->number = rand() % 1000;
// 节点的连接, 添加到链表的头部, 新节点就新的头结点
pnew->next = head;
// head指针前移
head = pnew;
printf("+++producer, number = %d, tid = %ld\n", pnew->number, pthread_self());
pthread_mutex_unlock(&mutex);
// 通知消费者消费
sem_post(&csem);
// 生产慢一点
sleep(rand() % 3);
}
return NULL;
}
// 消费者的回调函数
void* consumer(void* arg)
{
while(1)
{
sem_wait(&csem);
pthread_mutex_lock(&mutex);
struct Node* pnode = head;
printf("--consumer: number: %d, tid = %ld\n", pnode->number, pthread_self());
head = pnode->next;
// 取出链表的头结点, 将其删除
free(pnode);
pthread_mutex_unlock(&mutex);
// 通知生产者生成, 给生产者加信号灯
sem_post(&psem);
sleep(rand() % 3);
}
return NULL;
}
int main()
{
// 初始化信号量
sem_init(&psem, 0, 5); // 生成者线程一共有5个信号灯
sem_init(&csem, 0, 0); // 消费者线程一共有0个信号灯
// 初始化互斥锁
pthread_mutex_init(&mutex, NULL);
// 创建5个生产者, 5个消费者
pthread_t ptid[5];
pthread_t ctid[5];
for(int i=0; i<5; ++i)
{
pthread_create(&ptid[i], NULL, producer, NULL);
}
for(int i=0; i<5; ++i)
{
pthread_create(&ctid[i], NULL, consumer, NULL);
}
// 释放资源
for(int i=0; i<5; ++i)
{
pthread_join(ptid[i], NULL);
}
for(int i=0; i<5; ++i)
{
pthread_join(ctid[i], NULL);
}
sem_destroy(&psem);
sem_destroy(&csem);
pthread_mutex_destroy(&mutex);
return 0;
}
Note
这两行代码的调用顺序是不能颠倒的,如果颠倒过来就有可能会造成死锁。
// 消费者
sem_wait(&csem);
pthread_mutex_lock(&mutex);
// 生产者
sem_wait(&csem);
pthread_mutex_lock(&mutex);
下面来分析一种死锁的场景:
void* producer(void* arg)
{
// 一直生产
while(1)
{
pthread_mutex_lock(&mutex);
// 生产者拿一个信号灯
sem_wait(&psem);
......
......
// 通知消费者消费
sem_post(&csem);
pthread_mutex_unlock(&mutex);
// 生产慢一点
sleep(rand() % 3);
}
return NULL;
}
// 消费者的回调函数
void* consumer(void* arg)
{
while(1)
{
pthread_mutex_lock(&mutex);
sem_wait(&csem);
......
......
// 通知生产者生成, 给生产者加信号灯
sem_post(&psem);
pthread_mutex_unlock(&mutex);
sleep(rand() % 3);
}
return NULL;
}
int main()
{
// 初始化信号量
sem_init(&psem, 0, 5); // 生成者线程一共有5个信号灯
sem_init(&csem, 0, 0); // 消费者线程一共有0个信号灯
......
......
return 0;
}
在上面的代码中,初始化状态下消费者线程没有任务信号量资源,假设某一个消费者线程先运行,调用pthread_mutex_lock(&mutex);对互斥锁加锁成功,然后调用sem_wait(&csem);由于没有资源,因此被阻塞了。其余的消费者线程由于没有抢到互斥锁,因此被阻塞在互斥锁上。对应生产者线程第一步操作也是调用pthread_mutex_lock(&mutex);,但是这时候互斥锁已经被消费者线程锁上了,所有生产者都被阻塞,到此为止,多余的线程都被阻塞了,程序产生了死锁。

有名信号量生产者消费者模型代码:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <semaphore.h>
#include <pthread.h>
#include <fcntl.h> // 用于O_CREAT等标志
// 链表的节点
struct Node
{
int number;
struct Node* next;
};
// 生产者线程信号量
sem_t* psem;
// 消费者线程信号量
sem_t* csem;
// 互斥锁变量
pthread_mutex_t mutex;
// 指向头结点的指针
struct Node * head = NULL;
// 生产者的回调函数
void* producer(void* arg)
{
// 一直生产
while(1)
{
// 生产者拿一个信号灯
sem_wait(psem);
// 加锁, 这句代码放到 sem_wait()上边, 有可能会造成死锁
pthread_mutex_lock(&mutex);
// 创建一个链表的新节点
struct Node* pnew = (struct Node*)malloc(sizeof(struct Node));
// 节点初始化
pnew->number = rand() % 1000;
// 节点的连接, 添加到链表的头部, 新节点就新的头结点
pnew->next = head;
// head指针前移
head = pnew;
printf("+++producer, number = %d, tid = %ld\n", pnew->number, pthread_self());
pthread_mutex_unlock(&mutex);
// 通知消费者消费
sem_post(csem);
// 生产慢一点
sleep(rand() % 3);
}
return NULL;
}
// 消费者的回调函数
void* consumer(void* arg)
{
while(1)
{
sem_wait(csem);
pthread_mutex_lock(&mutex);
struct Node* pnode = head;
printf("--consumer: number: %d, tid = %ld\n", pnode->number, pthread_self());
head = pnode->next;
// 取出链表的头结点, 将其删除
free(pnode);
pthread_mutex_unlock(&mutex);
// 通知生产者生成, 给生产者加信号灯
sem_post(psem);
sleep(rand() % 3);
}
return NULL;
}
int main()
{
// 创建有名信号量
psem = sem_open("/psem", O_CREAT, 0666, 5); // 生成者线程有5个信号灯
if (psem == SEM_FAILED) {
perror("sem_open");
return 1;
}
csem = sem_open("/csem", O_CREAT, 0666, 0); // 消费者线程有0个信号灯
if (csem == SEM_FAILED) {
perror("sem_open");
return 1;
}
// 初始化互斥锁
pthread_mutex_init(&mutex, NULL);
// 创建5个生产者, 5个消费者
pthread_t ptid[5];
pthread_t ctid[5];
for(int i=0; i<5; ++i)
{
pthread_create(&ptid[i], NULL, producer, NULL);
}
for(int i=0; i<5; ++i)
{
pthread_create(&ctid[i], NULL, consumer, NULL);
}
// 释放资源
for(int i=0; i<5; ++i)
{
pthread_join(ptid[i], NULL);
}
for(int i=0; i<5; ++i)
{
pthread_join(ctid[i], NULL);
}
// 关闭和销毁有名信号量
sem_close(psem);
sem_close(csem);
sem_unlink("/psem");
sem_unlink("/csem");
pthread_mutex_destroy(&mutex);
return 0;
}

被折叠的 条评论
为什么被折叠?



