import tensorflow as tf
import numpy as np
# 自定义数据集类
class CustomDataset(tf.data.Dataset):
def __init__(self, x_data, y_data):
self.x_data = tf.convert_to_tensor(x_data, dtype=tf.float32)
self.y_data = tf.convert_to_tensor(y_data, dtype=tf.float32)
def __iter__(self):
for i in range(len(self.x_data)):
yield (self.x_data[i], self.y_data[i])
# 逻辑回归模型
class LogisticRegressionModel(tf.keras.Model):
def __init__(self, input_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = tf.keras.layers.Dense(1, input_shape=(input_dim,), activation='sigmoid')
def call(self, x):
return self.linear(x)
# 创建数据集
x_data = np.array([[1], [2