传统视觉轮廓识别

传统视觉第二讲

学习任务

2023传统视觉第二讲–轮廓识别

传统视觉识别流程

对于输入的图片,使用各种图像处理手段,如颜色空间转换、二值化、形态学处理等得到一张只包含黑白两色的mask,再对mask进行轮廓提取,根据轮廓的长宽面积等特征筛选出目标轮廓。
在这里插入图片描述
转换成下面这样
在这里插入图片描述

findContours函数

轮廓提取使用findContours函数,其参数如下:

void cv::findContours ( InputArray image,
OutputArrayOfArrays contours,
OutputArray hierarchy,
int mode,
int method,
Point offset = Point()
)

void cv::findContours ( InputArray image,
OutputArrayOfArrays contours,
int mode,
int method,
Point offset = Point()
)

参数释义

第一个参数:image,单通道图像矩阵,可以是灰度图,但更常用的是二值图像,一般是经过Canny、拉普拉斯等边缘检测算子处理过的二值图像;
第二个参数:contours,定义为“vector<vector> contours”,即为得到的一组轮廓,每个轮廓由点集vector表示;
第三个参数(可选):hierarchy,定义为“vector hierarchy”,用来表示轮廓的等级关系,暂时不作介绍;
第四个参数:int型的mode,定义轮廓的检索模式:
取值一:CV_RETR_EXTERNAL只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略;
取值二:CV_RETR_LIST 检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立等级关系;
取值三:CV_RETR_CCOMP 检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层;
取值四:CV_RETR_TREE 检测所有轮廓,所有轮廓建立一个等级树结构。外层轮廓包含内层轮廓,内层轮廓还可以继续包含内嵌轮廓。
第五个参数:int型的method,定义轮廓的近似方法:
取值一:CV_CHAIN_APPROX_NONE 保存物体边界上所有连续的轮廓点到contours向量内
取值二:CV_CHAIN_APPROX_SIMPLE 仅保存轮廓的拐点信息,把所有轮廓拐点处的点保存入contours向量内,拐点与拐点之间直线段上的信息点不予保留
其他取值不作介绍
第六个参数:Point偏移量,所有的轮廓信息相对于原始图像对应点的偏移量。

为便于观察,在提取轮廓后可使用drawContours方法绘制轮廓。

对轮廓的操作

凸包convexHull
在这里插入图片描述

最小外接矩形minAreaRect
在这里插入图片描述

最小外接圆minEnclosingCircle
最小外接椭圆fitEllipse

任务

下图为对包含装甲板的图像处理后得到的mask,对于该图,提取并筛选出装甲板两个灯柱的轮廓,并标出装甲板的中心。在这里插入图片描述
这里由于本人代码水平并不高,于是参考了同组大佬的代码
原文链接:在这里
运行好以后图片为:
在这里插入图片描述

import cv2 as cv import numpy as np def scan_edge_demo(img): gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) gray = cv.GaussianBlur(gray,(3,3),0) scan_edge = cv.Canny(gray,60,150) return scan_edge def scan_contours(img): scan_edge =scan_edge_demo(img) aa,contours,b= cv.findContours(scan_edge,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) cv.drawContours(img,contours,-1,(0,255,255),thickness=4) cv.imshow("scan_contours",img) src = cv.imread("E:/opencv/picture/taijie.png") cv.imshow("inital_window",src) scan_contours(src) cv.waitKey(0) cv.destroyAllWindows() 图片: 分析: 1.Opencv发现轮廓的函数原型为:findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> image, contours, hierarchy image参数表示8位单通道图像矩阵,可以是灰度图,但更常用的是二值图像,一般是经过Canny、拉普拉斯等边缘检测算子处理过的二值图像。 所以输入源需要二值化(threshold)处理或者边缘处理canny后才行 mode参数表示轮廓检索模式: ①CV_RETR_EXTERNAL:只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略。 ②CV_RETR_LIST:检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立等级关系,彼此之间独立,没有等级关系,这就意味着这个检索模式下不存在父轮廓或内嵌轮廓。 ③CV_RETR_CCOMP:检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层。 ④CV_RETR_TREE:检测所有轮廓,所有轮廓建立一个等级树结构,外层轮廓包含内层轮廓,内层轮廓还可以继续包含内嵌轮廓。 method参数表示轮廓的近似方法: ①CV_CHAIN_APPROX_NONE 存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max (abs (x1 - x2), abs(y2 - y1) == 1。 ②CV_CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息。 ③CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法。 contours参数是一个list,表示存储的每个轮廓的点集合。 hierarchy参数是一个list,list中元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。 offset参数表示每个轮廓点移动的可选偏移量。 2.Opencv绘制轮廓的函数原型为:drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> image imgae参数表示目标图像。 contours参数表示所有输入轮廓。 contourIdx参数表示绘制轮廓list中的哪条轮廓, 如果是负数,则绘制所有轮廓。 color参数表示轮廓的颜色。 thickness参数表示绘制的轮廓线条粗细,如果是负数,则绘制轮廓内部。 lineType参数表示线型。 hierarchy参数表示有关层次结构的可选信息。 maxLevel参数表示绘制轮廓的最大级别。 如果为0,则仅绘制指定的轮廓。 如果为1,则该函数绘制轮廓和所有嵌套轮廓。 如果为2,则该函数绘制轮廓,所有嵌套轮廓,所有嵌套到嵌套的轮廓,等等。 仅当有可用的层次结构时才考虑此参数。 offset参数表示可选的轮廓偏移参数,该参数可按指定的方式移动所有绘制的轮廓。 关于轮廓检测,什么的样的情况会被判断为轮廓呢? 答:因为在做轮廓检测之前需要进行二值化,所以对于图像的整个ROI区域只有黑白两个颜色,而下面两种情况会被检测作为轮廓: 1. 白色区域与黑色区域的边缘交接区域 2. 当背景为白色时,整个ROI区域的外边界就会被视为轮廓。(往往我们希望背景是黑色,所以如果出现这种情况时我们需要在二值化图像时对图像取反)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我饿了505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值