写这篇博客的原因是博主本人在看某篇文章的时候,发现自己只是知道SGD这个东西,但是到底是个啥不清楚,所以百度了一下,然后在通过博客学习的时候看到了退火两个字,想到了本科做数模比赛的时候涉猎过,就上bilibili搜索讲解视频学习了退火的算法,感觉看完之后收获还蛮大的,所以写下这篇博客作为记录。话不多说,上正文——
一、算法介绍
模拟退火算法(Simulated Annealing, SA)是一种概率型优化算法,它受到物理学中固体物质退火过程的启发。退火过程是指将固体加热后再慢慢冷却,使其达到能量最低的稳定状态。模拟退火算法将这一过程应用于组合优化问题,通过模拟退火过程来寻找问题的全局最优解。
举个栗子,逼近下图函数的最大值,利用退火的思想就是经过多次迭代(退火),逼近函数上的A点。
因为模拟退火算法借鉴的是固体的退货原理,相信理科生都能很快get到,温度越高,固体内部的分子能量越高,均处于快速无序的运动,当温度慢慢降低时,分子的能量降低,慢慢地趋于有序,到最后达到常温的时候,能量达到最小,此时内部的分子最为稳定。从前面这段话我们可以解析出几个点——
- 温度越高,分子越乱,放在退火算法里就是温度越高,x的跳变范围越大
- 温度变化是缓慢的,特别特别慢那种