信号量也是线程的一种同步机制,本质上是一个整型计数器。
初始化信号量:
int sem_init(sem_t *sem, int pshared, unsigned int value);
参数:
pshared:0表示线程间共享,非零表示进程间共享
value:信号量初始值
销毁信号量:
int sem_destroy(sem_t *sem);
等待信号量:
int sem_wait(sem_t *sem); //也叫P()
功能:等待信号量,会将信号量的值减1
若计数器等于 0,则线程阻塞,直到其他线程释放资源
发布信号量:
int sem_post(sem_t *sem); //也叫V()
功能:发布信号量,表示资源使用完毕,可以归还资源了。将信号量值加1。
若有线程在等待,系统会唤醒一个等待的资源(上面wait中)。
现在使用循环队列来演示生产者-消费者模型:
RingQueue.hpp:
#pragma once
#include <iostream>
#include <vector>
#include <string>
#include <semaphore.h>
#include <pthread.h>
template<typename T>
class RingQueue
{
private:
void P(sem_t &s)
{
sem_wait(&s); //等待信号量
}
void V(sem_t &s)
{
sem_post(&s); //发布信号量
}
public:
RingQueue(int max_cap)
:_ringqueue(max_cap), _max_cap(max_cap), _c_step(0), _p_step(0)
{
//初始化信号量
sem_init(&_data_sem, 0, 0); //数据量为0
sem_init(&_space_sem, 0, _max_cap); //空间量满的
pthread_mutex_init(&_c_mutex, nullptr);
pthread_mutex_init(&_p_mutex, nullptr);
}
void Push(const T &in) //生产者放入
{
P(_space_sem); //生产者放入数据,所以循环队列空间减一
//确定有位置再加锁,而不是加了锁之后发现没有位置然后就阻塞
//此时仍持有锁,而其他线程就无法获取锁
pthread_mutex_lock(&_p_mutex);
_ringqueue[_p_step] = in;
_p_step++;
_p_step %= _max_cap;
pthread_mutex_unlock(&_p_mutex);
V(_data_sem); //数据加一
}
void Pop(T *out) //消费
{
P(_data_sem); //尝试获取数据,没有就阻塞
pthread_mutex_lock(&_c_mutex);
*out = _ringqueue[_c_step]; //获取数据
_c_step++;
_c_step %= _max_cap;
pthread_mutex_unlock(&_c_mutex);
V(_space_sem); //上面消费者获取数据后,空间加一
}
~RingQueue()
{
sem_destroy(&_data_sem);
sem_destroy(&_space_sem);
pthread_mutex_destroy(&_c_mutex);
pthread_mutex_destroy(&_p_mutex);
}
private:
std::vector<T> _ringqueue;
int _max_cap; //最大容量
int _c_step; //消费者指向的位置
int _p_step; //生产者指向的位置
sem_t _data_sem; //所剩数据的信号量-消费者取数据
sem_t _space_sem; //所剩空间的信号量-生产者产数据
pthread_mutex_t _c_mutex; //消费者的锁,管理消费者之间的关系
pthread_mutex_t _p_mutex; //生产者的锁,管理生产者之间的关系
};
Task.hpp:
#pragma once
#include <string>
class Task
{
public:
Task()
{
}
Task(int x, int y):_x(x), _y(y)
{}
void Excute()
{
_result = _x + _y;
}
std::string Result()
{
std::string msg = std::to_string(_x) + "+" + std::to_string(_y) + "=" + std::to_string(_result);
return msg;
}
std::string debug()
{
std::string msg = std::to_string(_x) + "+" + std::to_string(_y) + "=?";
return msg;
}
private:
int _x;
int _y;
int _result;
};
Main.cc:
#include "RingQueue.hpp"
#include "Task.hpp"
#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <random>
void *consumerFunc(void *args)
{
RingQueue<Task> *rq = static_cast<RingQueue<Task> *>(args);
while (true)
{
Task t;
rq->Pop(&t); //取数据
t.Excute(); //执行
std::cout << "consumer -> " << t.Result() << std::endl;
}
}
void *producerFunc(void *args)
{
RingQueue<Task> *rq = static_cast<RingQueue<Task> *>(args);
while (true)
{
sleep(1);
int x = rand() % 10 + 1; //1~10
usleep(x*1000);
int y = rand() % 20 + 1; //1~20
Task t(x, y);
rq->Push(t); //存数据
std::cout << "producer -> " << t.debug() << std::endl;
}
}
int main()
{
srand(time(nullptr) ^ getpid());
RingQueue<Task> *rq = new RingQueue<Task>(5);
pthread_t consumer1, consumer2, producer1, producer2;
pthread_create(&consumer1, nullptr, consumerFunc, rq);
pthread_create(&consumer2, nullptr, consumerFunc, rq);
pthread_create(&producer1, nullptr, producerFunc, rq);
pthread_create(&producer2, nullptr, producerFunc, rq);
pthread_join(consumer1, nullptr);
pthread_join(consumer2, nullptr);
pthread_join(producer1, nullptr);
pthread_join(producer2, nullptr);
return 0;
}
1227

被折叠的 条评论
为什么被折叠?



