
信息检索
文章平均质量分 95
长命百岁️
中科院计算所博士在读
展开
-
【论文阅读】语言模型何时需要检索增强
语言模型何时需要检索增强原创 2024-10-30 00:04:00 · 1046 阅读 · 0 评论 -
【论文阅读】Reliable, Adaptable, and Attributable Language Models with Retrieval
Reliable, Adaptable, and Attributable Language Models with Retrieval原创 2024-10-27 21:18:36 · 1455 阅读 · 0 评论 -
【深度学习】直观理解AUROC
小白也能懂的AUROC介绍原创 2024-08-16 10:05:55 · 1836 阅读 · 0 评论 -
【SIGIR-AP 2023】A Comparative Study of Training Objectives for Clarification Facet Generation
【SIGIR-AP 2023】AComparative Study of Training Objectives for Clarification Facet Generation原创 2023-10-20 19:43:08 · 375 阅读 · 0 评论 -
【论文阅读】检索增强发展历程及相关文章总结
检索增强相关文章总结:`Knn-LM`->`REALM`->`DPR`->`RAG`->`FID`->`COG`->`GenRead`->`REPLUG`->`Adaptive retrieval`原创 2023-09-19 11:32:13 · 2137 阅读 · 3 评论 -
【论文阅读】REPLUG: Retrieval-Augmented Black-Box Language Models
【论文阅读】REPLUG: Retrieval-Augmented Black-Box Language Models原创 2023-05-19 22:54:37 · 3326 阅读 · 6 评论 -
【论文阅读】MIMICS: A Large-Scale Data Collection for Search Clarification
【论文阅读】MIMICS: A Large-Scale Data Collection for Search Clarification原创 2023-03-17 15:50:57 · 420 阅读 · 0 评论 -
【论文阅读 SIGIR‘19】Asking Clarifying Questions in Open-Domain Information-Seeking Conversations
【论文阅读 SIGIR'19】Asking Clarifying Questions in Open-Domain Information-Seeking Conversations原创 2023-03-11 23:03:49 · 314 阅读 · 2 评论 -
【论文阅读】Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of
【论文阅读】Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of Perfect Information原创 2023-03-10 11:09:48 · 289 阅读 · 0 评论 -
【论文阅读 WWW‘23】Zero-shot Clarifying Question Generation for Conversational Search
【论文阅读 WWW'23】Zero-shot Clarifying Question Generation for Conversational Search原创 2023-03-05 21:59:50 · 1085 阅读 · 1 评论 -
BPE(Byte-Pair Encoding)简介
BPE简介原创 2023-02-20 16:40:05 · 4566 阅读 · 1 评论 -
常见的分词方法
常见的分词方法:word-based,character-based,subword-based tokenization原创 2023-02-19 23:34:05 · 546 阅读 · 0 评论 -
【论文阅读 T5】Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
【论文阅读 T5】Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer原创 2023-01-16 00:37:42 · 962 阅读 · 1 评论 -
【论文阅读 CIKM2011】Finding Dimensions for Queries
【论文阅读 CIKM2011】Finding Dimensions for Queries原创 2023-01-15 00:43:06 · 933 阅读 · 3 评论 -
【论文阅读 CIKM2014】Extending Faceted Search to the General Web
【论文阅读 CIKM2014】Extending Faceted Search to the General Web原创 2023-01-14 17:15:28 · 570 阅读 · 2 评论 -
【论文阅读】Stochastic Optimization of Text Set Generation for Learning Multiple Query Intent Representati
【论文阅读 CIKM 2022】Stochastic Optimization of Text Set Generation for Learning Multiple Query Intent Representations原创 2023-01-13 19:55:40 · 333 阅读 · 0 评论 -
Clarifying Question领域最常见的三个数据集
Clarifying Question 领域最常用的数据集原创 2023-01-12 22:20:40 · 1021 阅读 · 0 评论 -
【论文阅读 CIKM‘2021】Learning Multiple Intent Representations for Search Queries
【论文阅读 CIKM'2021】Learning Multiple Intent Representations for Search Queries原创 2022-12-05 23:23:50 · 570 阅读 · 0 评论 -
【论文阅读 ICTIR‘2022】Revisiting Open Domain Query Facet Extraction and Generation
【论文阅读 ICTIR'2022】Revisiting Open Domain Query Facet Extraction and Generation原创 2022-11-30 23:08:21 · 829 阅读 · 0 评论 -
【论文阅读】Evaluating Mixed-initiative Conversational Search Systems via User Simulation
【WSDM'2022】Evaluating Mixed-initiative Conversational Search Systems via User Simulation原创 2022-11-28 22:00:37 · 483 阅读 · 0 评论 -
关于Dialog和Clarifying question的一些调研
关于Dialog和Clarifying question的文献整理原创 2022-11-19 21:54:12 · 1486 阅读 · 2 评论 -
【论文阅读 WSDM‘21】PROP: Pre-training with Representative Words Prediction for Ad-hoc Retrieval
【论文阅读 WSDM'21】PROP: Pre-training with Representative Words Prediction for Ad-hoc Retrieval原创 2022-11-01 23:10:40 · 626 阅读 · 1 评论 -
【论文阅读 NeurIPS 2022】A Large Scale Search Dataset for Unbiased Learning to Rank
【论文阅读】A Large Scale Search Dataset for Unbiased Learning to Rank原创 2022-10-25 23:02:23 · 1601 阅读 · 2 评论 -
【论文阅读】Pre-training Methods in Information Retrieval
【论文阅读 FnTIR2022】Pre-training Methods in Information Retrieval原创 2022-10-23 11:57:34 · 1175 阅读 · 1 评论 -
信息检索相关任务及数据集介绍
信息检索相关任务及数据集介绍原创 2022-10-20 11:47:26 · 5107 阅读 · 2 评论 -
【论文阅读】GPT系列论文详解
【论文阅读】GPT系列论文详解原创 2022-10-09 17:23:17 · 9139 阅读 · 1 评论 -
【论文阅读】Multitask Prompted Training Enables Zero-shot Task Generalization
【论文阅读 ICLR2022】Multitask Prompted Training Enables Zero-shot Task Generalization原创 2022-10-06 22:53:37 · 2299 阅读 · 4 评论 -
【论文阅读】Finetuned Language Models Are Zero-Shot Learners
【论文阅读 ICLR2022】Finetuned Language Models Are Zero-Shot Learners原创 2022-10-01 17:47:41 · 4102 阅读 · 5 评论 -
【论文阅读】A Deep Look into Neural Ranking Models for Information Retrieval
信息检索第二阶段【排序阶段】的综述原创 2022-09-21 22:35:09 · 863 阅读 · 5 评论 -
【论文阅读】Semantic Models for the First-stage Retrieval- A Comprehensive Review
信息检索第一阶段【retrieval】综述原创 2022-09-13 20:47:55 · 2071 阅读 · 5 评论 -
IR Evaluation
MAP , MRR , NDCG第一步,读取数据并处理读取 qrels.txt中的数据,并对格式进行处理,转成字典形式存储在列表中queryAns = []with open("qrels.txt", "r") as f: file = f.readlines() for line in file: query_dict = {} line = line.strip("\n") line = line.split(" ")原创 2021-11-24 23:38:55 · 346 阅读 · 3 评论