前言:迪杰斯特拉dijkstra算法的作用是求解区域内最优解
def generate_matrix():
M = 1E100
matrix = [[0, 12, M, M, M, 16, 14],
[12, 0, 10, M, M, 7, M],
[M, 10, 0, 3, 5, 6, M],
[M, M, 3, 0, 4, M, M],
[M, M, 5, 4, 0, 2, 8],
[16, 7, 6, M, 2, 0, 9],
[14, M, M, M, 8, 9, 0]]
return matrix
def dijkstra(matrix, source):
M = 1E100
n = len(matrix)
m = len(matrix[0])
if source >= n or n != m:
print('Error!')
return
found = [source] # 已找到最短路径的节点
cost = [M] * n # source到已找到最短路径的节点的最短距离
cost[source] = 0
path = [[]]*n # source到其他节点的最短路径
path[source] = [source]
while len(found) < n: # 当已找到最短路径的节点小于n时
min_value = M+1
col = -1
row = -1
for f in found: # 以已找到最短路径的节点所在行为搜索对象
for i in [x for x in range(n) if x not in found]: # 只搜索没找出最短路径的列
if matrix[f][i] + cost[f] < min_value: # 找出最小值
min_value = matrix[f][i] + cost[f] # 在某行找到最小值要加上source到该行的最短路径
row = f # 记录所在行列
col = i
if col == -1 or row == -1: # 若没找出最小值且节点还未找完,说明图中存在不连通的节点
break
found.append(col) # 在found中添加已找到的节点
cost[col] = min_value # source到该节点的最短距离即为min_value
path[col] = path[row][:] # 复制source到已找到节点的上一节点的路径
path[col].append(col) # 再其后添加已找到节点即为sorcer到该节点的最短路径
return found, cost, path
def main():
matrix = generate_matrix()
found, cost, path = dijkstra(matrix, 3)
print('found:')
print(found)
print('cost:')
print(cost)
print('path:')
for p in path:
print(p)
if __name__ == '__main__':
main()
#include <stdio.h>
int main()
{
int e[10][10],dis[10],book[10],i,j,n,m,t1,t2,t3,u,v,min;
int inf=99999999; //用inf(infinity的缩写)存储一个我们认为的正无穷值
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m);
//初始化
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(i==j) e[i][j]=0;
else e[i][j]=inf;
//读入边
for(i=1;i<=m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
}
//初始化dis数组,这里是1号顶点到其余各个顶点的初始路程
for(i=1;i<=n;i++)
dis[i]=e[1][i];
//book数组初始化
for(i=1;i<=n;i++)
book[i]=0;
book[1]=1;
//Dijkstra算法核心语句
for(i=1;i<=n-1;i++)
{
//找到离1号顶点最近的顶点
min=inf;
for(j=1;j<=n;j++)
{
if(book[j]==0 && dis[j]<min)
{
min=dis[j];
u=j;
}
}
book[u]=1;
for(v=1;v<=n;v++)
{
if(e[u][v]<inf)
{
if(dis[v]>dis[u]+e[u][v])
dis[v]=dis[u]+e[u][v];
}
}
}
//输出最终的结果
for(i=1;i<=n;i++)
printf("%d ",dis[i]);
getchar();
getchar();
return 0;
}