加载数据集
import numpy as np
import torch
import matplotlib.pyplot as plt
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
class DiabetesDataset(Dataset):
def __init__(self, filepath):
xy = np.loadtxt(fname=filepath, delimiter=',', skiprows=1, dtype=np.float32)
self.len = xy.shape[0]
self.x_data = torch.from_numpy(xy[:, :-1])
self.y_data = torch.from_numpy(xy[:, [-1]])
def __getitem__(self, item):
return self.x_data[item], self.y_data[item]
def __len__(self):
return self.len
dataset = DiabetesDataset("./datasets/diabetes.csv")
dataloader = DataLoader(dataset=dataset, batch_size=32, shuffle=True)
class DiabetesModel(torch.nn.Module):
def __init__(self):
super(DiabetesModel, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.relu(self.linear1(x))
x = self.relu(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = DiabetesModel()
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
loss = []
if __name__ == '__main__':
for epoch in range(100):
for i, data in enumerate(dataloader, 0):
x, y = data
y_pred = model(x)
l = criterion(y_pred, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
loss.append(l.item())
print(f"epoch: {epoch}, loss: {l.item()}")
loss = np.array(loss)
plt.plot(range(100), loss)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
plt.close()
from torchvision import datasets
from torchvision import transforms
train = datasets.MNIST(train=True, root="./datasets/mnist", download=True, transform=transforms.ToTensor())
test = datasets.MNIST(root="./datasets/mnist", download=True, train=False, transform=transforms.ToTensor())
tra_loader = DataLoader(dataset=train, shuffle=True, batch_size=32)
test_loader = DataLoader(dataset=test, shuffle=False, batch_size=32)
for i, (inputs, labels) in enumerate(tra_loader):
pass