逻辑斯蒂回归
Sigmoid 函数将任意实数映射到 (0, 1) 的范围内。数学表达式为:
σ(x)=11+e−x\sigma(x) = {1 \over {1+e^{-x}}}σ(x)=1+e−x1
import torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
x_data = torch.tensor([[1.0], [2.0], [3.0]])
y_data = torch.tensor([[0], [0], [1]]).float() # 分类,0或1
class LogisticRegressionModel(torch.nn.Module):
def __init__(self):
super(LogisticRegressionModel, self).__init__()
self.linear = torch.nn.Linear(1, 1)
def forward(self, x):
y_pred = F.sigmoid(self.linear(x)) # F.sigmoid没有参数,所以不需要初始化
return y_pred
model = LogisticRegressionModel()
# 二分类交叉熵损失
criterion = torch.nn.BCELoss(size_average=True)
# 优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(1000):
y_pred = model(x_data)
l = criterion(y_pred, y_data)
print("epoch:{}\tloss: {}\t".format(epoch, l.item()))
optimizer.zero_grad() # 梯度清零
l.backward()
optimizer.step()
# 预测和画图
x = torch.tensor(np.linspace(0, 10, 200)).float()
x = x.view((200, 1))
y = model(x)
# 转为array
x = x.detach().numpy()
y = y.detach().numpy()
plt.plot(x, y)
plt.plot([0, 10], [0.5, 0.5], c='r')
plt.xlabel("Hours")
plt.ylabel("Probability of Pass")
plt.show()
plt.close()
658

被折叠的 条评论
为什么被折叠?



