cannot import name ‘layer_utils‘ from ‘keras.utils‘

文章讨论了如何修复在尝试从Keras导入layer_utils时出现的错误,建议将import语句更新为TensorFlow版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

报错:cannot import name ‘layer_utils’ from ‘keras.utils’

解决方法:将from keras.utils import layer_utils换成from tensorflow.python.keras.utils import layer_utils

:\Miniconda\envs\lianxi\python.exe -X pycache_prefix=C:\Users\ZDW\AppData\Local\JetBrains\PyCharm2025.1\cpython-cache "D:/PyCharm 2025.1.2/plugins/python-ce/helpers/pydev/pydevd.py" --multiprocess --qt-support=auto --client 127.0.0.1 --port 50014 --file D:\CXLX\.py\venv\fly.py 已连接到 pydev 调试器(内部版本号 251.26094.141)Traceback (most recent call last): File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 975, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 671, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 783, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "E:\Miniconda\envs\lianxi\lib\site-packages\tensorflow\__init__.py", line 478, in <module> importlib.import_module("keras.optimizers") File "E:\Miniconda\envs\lianxi\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\__init__.py", line 25, in <module> from keras import models File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\models\__init__.py", line 3, in <module> from keras.models import experimental File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\models\experimental\__init__.py", line 3, in <module> from keras.src.models.sharpness_aware_minimization import SharpnessAwareMinimization File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\__init__.py", line 21, in <module> from keras.src import models File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\models\__init__.py", line 18, in <module> from keras.src.engine.functional import Functional File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\engine\functional.py", line 25, in <module> from keras.src import backend File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\backend.py", line 35, in <module> from keras.src.engine import keras_tensor File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\engine\keras_tensor.py", line 19, in <module> from keras.src.utils import object_identity File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\utils\__init__.py", line 53, in <module> from keras.src.utils.feature_space import FeatureSpace File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\utils\feature_space.py", line 20, in <module> from keras.src.engine import base_layer File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\engine\base_layer.py", line 43, in <module> from keras.src.saving.legacy.saved_model import layer_serialization File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\saving\legacy\saved_model\layer_serialization.py", line 23, in <module> from keras.src.saving.legacy.saved_model import save_impl File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\saving\legacy\saved_model\save_impl.py", line 34, in <module> from keras.src.saving.legacy.saved_model import load as keras_load File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\saving\legacy\saved_model\load.py", line 29, in <module> from keras.protobuf import saved_metadata_pb2 File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\protobuf\saved_metadata_pb2.py", line 16, in <module> from keras.protobuf import versions_pb2 as keras_dot_protobuf_dot_versions__pb2 File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\protobuf\versions_pb2.py", line 36, in <module> _descriptor.FieldDescriptor( File "E:\Miniconda\envs\lianxi\lib\site-packages\google\protobuf\descriptor.py", line 553, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower). More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates python-BaseException
最新发布
07-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值