用到pytorch但不是纯框架的kaggle房价预测完整代码(动手学深度学习)

这段代码展示了如何使用PyTorch实现K折交叉验证进行深度学习模型训练。数据集来源于Kaggle的房屋价格预测,经过预处理包括数据加载、标准化、缺失值处理和one-hot编码。模型采用了简单的线性模型,损失函数为均方根误差,并使用Adam优化器。代码还包含了数据加载、训练、验证和绘图的函数,以及K折交叉验证的实现。
部署运行你感兴趣的模型镜像

代码是根据《动手学深度学习torch版》写的,在原书的4.10

关于函数之类的我都写在代码中了,只要环境没问题,应该能直接跑的。

采用的Adam优化,均方根误差loss,k-折验证

超参数不是最优的,大家可以自己调一下^_^

数据集我也发了点我查看就好

import hashlib
import os
import tarfile
import zipfile
import requests
import numpy as py
import pandas as pd
from IPython import display
import torch
from torch import nn
import matplotlib.pyplot as plt

DATA_HUB = dict()  # dict()用于创造一个字典
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'


def download(name, cache_dir=os.path.join('data')):
    # 下载一个DATA_HUB中的文件,返回本地文件名
    assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}."
    url, sha1_hash = DATA_HUB[name]
    os.makedirs(cache_dir, exist_ok=True)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname  # Hit cache
    print(f'正在从{url}下载{fname}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname


def download_extract(name, folder=None):
    # 下载并解压zip/tar文件
    fname = download(name)
    base_dir = os.path.dirname(fname)
    data_dir, ext = os.path.splitext(fname)
    if ext == '.zip':
        fp = zipfile.ZipFile(fname, 'r')
    elif ext in ('.tar', '.gz'):
        fp = tarfile.open(fname, 'r')
    else:
        assert False  # 只有zip/tar文件可以被解压缩
    fp.extractall(base_dir)
    return os.path.join(base_dir, folder) if folder else data_dir


def load_array(data_arrays, batch_size, is_train=True):
    # 构造一个pytorch数据迭代器
    dataset = torch.utils.data.TensorDataset(*data_arrays)
    return torch.utils.data.DataLoader(dataset, batch_size, shuffle=is_train)


def download_all():
    # 下载DATA_HUB中的所有文件
    for name in DATA_HUB:
        download(name)


# 下载并缓存kaggle房屋数据集
DATA_HUB['kaggle_house_train'] = (DATA_URL + 'kaggle_house_pred_train.csv', '585e9cc93e70b39160e7921475f9bcd7d31219ce')
DATA_HUB['kaggle_house_test'] = (DATA_URL + 'kaggle_house_pred_test.csv', 'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')

# 分别加载包含训练数据和测试数据的两个CSV文件
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))

# 查看数据集形状
# print(train_data.shape)
# print(test_data.shape)

# 看看看前四个后最后两个特征以及对应的标签
# print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])

# 第一个特征是ID,没有用,把它删除了
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:-1]))
# print(all_features.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])

# 标准化数据
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
# 在标准化数据之后,所有数据都意味着消失,因此我们可以将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)  # 缺失值(NA)用0来替换

# 'Dummy_na=True'将“na”(缺失值)视为有效的特征值,并且为其创建指示符特征
all_features = pd.get_dummies(all_features, dummy_na=True)  # one-hot
# print(all_features.shape)

# 通过values属性,从pandas格式中提取Numpy格式,并将其转换为张量表示用于训练
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)

# 一个简单的线性模型来测试数据
loss = nn.MSELoss()
in_features = train_features.shape[1]


def get_net():
    net = nn.Sequential(nn.Linear(in_features, 1))
    return net


# 均方根误差
def log_rmse(net, features, labels):
    # 为了在取对数时进一步稳定该值,将小于1的值设为1
    # torch.clamp将输入input张量每个元素的夹紧到区间 [min,max][min,max],并返回结果到一个新张量
    clipped_pred = torch.clamp(net(features), 1, float('inf'))
    rmse = torch.sqrt(loss(torch.log(clipped_pred), torch.log(labels)))

    return rmse.item()


def train(net, train_features, train_labels, test_features, test_labels, num_epochs,
          learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    train_iter = load_array((train_features, train_labels), batch_size)
    # 这里用的是Adam优化算法
    optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, weight_decay=weight_decay)
    for epoch in range(num_epochs):
        for X, y in train_iter:
            optimizer.zero_grad()  # 梯度清零
            l = loss(net(X), y)  # loss
            l.backward()  # 反向传播,获得梯度
            optimizer.step()  # 更新参数
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))

    return train_ls, test_ls


# K折交叉验证
def get_k_folk_data(k, i, X, y):
    assert k > 1
    fold_size = X.shape[0] // k  # //整除
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)  # 截取点
        X_part, y_part = X[idx, :], y[idx]
        if j == i:  # 验证集
            X_valid, y_valid = X_part, y_part
        elif X_train is None:   # 第一次
            X_train, y_train = X_part, y_part
        else:   # 连接X(y)_train与X(y)_part
            X_train = torch.cat([X_train, X_part], 0)
            y_train = torch.cat([y_train, y_part], 0)

    return X_train, y_train, X_valid, y_valid


def use_svg_display():
    """Use svg format to display plot in jupyter"""
    display.set_matplotlib_formats('svg')


def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize


def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    # 设置matplotlib的轴
    axes.set_xlabel(xlabel)
    axes.set_ylabel(ylabel)
    axes.set_xscale(xscale)
    axes.set_yscale(yscale)
    axes.set_xlim(xlim)
    axes.set_ylim(ylim)
    # if legend:    # 这里注释的原因是报了'AxesSubplot' object has no attribute 'lagend'的错,我没有找到具体的原因,但我发现注释了也可以直接跑,所以就先注释了,如果有知道的大佬请告知,谢谢!
    #     axes.lagend(legend)
    axes.grid()


def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None, ylim=None, xscale='linear', yscale='linear',
         fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
    # 绘制数据点
    if legend is None:
        legend = []
    set_figsize(figsize)
    axes = axes if axes else plt.gca()

    # 如果'X'有一个轴,输出True
    def has_one_axis(X):
        return hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)

    if has_one_axis(X):
        X = [X]
    if Y is None:
        X, Y = [[]] + len(X), X
    elif has_one_axis(Y):
        X = X * len(Y)
    axes.cla()  # Clear axis即清除当前图形中的当前活动轴。其他轴不受影响
    for x, y, fmt in zip(X, Y, fmts):
        if len(x):
            axes.plot(x, y, fmt)
        else:
            axes.plot(y, fmt)
    set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)


def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_folk_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls], xlabel='epoch', ylabel='rmse', legend=['train', 'valid'],
                     xlim=[1, num_epochs], yscale='log')
        print(f'fold{i + 1}, train log rmse {float(train_ls[-1]):f}, '
                  f'valid log rmse{float(valid_ls[-1]):f}')
    return train_l_sum / k, valid_l_sum / k


k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64    # 超参数,大家自己调一下
train_l, valid_l, = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print(f'{k}-折验证:平均训练log rmse:{float(train_l):f},'
      f'平均验证log rmse:{float(valid_l):f}')
plt.show()


您可能感兴趣的与本文相关的镜像

PyTorch 2.9

PyTorch 2.9

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值