数学建模——主成分分析算法详解Python代码

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
data=load_iris()
y=data.target
x=data.data
pca=PCA(n_components=2)
reduced_x=pca.fit_transform(x)
red_x,red_y=[],[]
blue_x,blue_y=[],[]
green_x,green_y=[],[]
for i in range(len(reduced_x)):
if y[i] ==0:
red_x.append(reduced_x[i][0])
red_y.append(reduced_x[i][1])
elif y[i]==1:
blue_x.append(reduced_x[i][0])
blue_y.append(reduced_x[i][1])
else:
green_x.append(reduced_x[i][0])
green_y.append(reduced_x[i][1])
plt.scatter(red_x,red_y,c='r',marker='x')
plt.scatter(blue_x,blue_y,c='b',marker='D')
plt.scatter(green_x,green_y,c='g',marker='.')
plt.show()
