二分模板
#include<iostream>
#include<cstdio>
#define fo(i,j,n) for(register int i=j; i<=n; ++i)
#define ll long long
using namespace std;
const int maxn = 1e5;
int n,F;
double a[maxn+5],b[maxn+5],sum[maxn+5];
// b数组为a数组减去平均数mid,所以只要某一段和非负即说明平均数大于mid
// 求 b 长度大于F的子串和非负
bool ok(double mid){
fo(i,1,n) b[i]=a[i]-mid;
// b 前缀和
fo(i,1,n){
sum[i] = sum[i-1] + b[i];
}
double min_val = 1e10,ans=-1e10;
fo(i,F,n){
min_val = min(sum[i-F], min_val); // 前面(0~i-F)的最小前缀和
ans = max(ans, sum[i]-min_val);
}
return ans>=0;
}
void solve(){
double l=-1,r=2000,eps=1e-4; // 2分平均数 ,eps一定要比题目精确度大,本题1e-3,可以取1e-5
while(r-l>eps){
double mid = (l+r)/2;
if(ok(mid)) l=mid;
else r=mid;
}
cout<<int(r*1000)<<endl; // 二分实数,取上界(当精确度小于题目精确度的时候L可以的时候R也必定可以,取大故取R)
}
int main(){
while(scanf("%d%d",&n,&F)==2){
fo(i,1,n)scanf("%lf",&a[i]);
solve();
}
return 0;
}
斜率线性求
#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define max(q,w) ((q)>(w)?(q):(w))
using namespace std;
typedef double db;
const int N=1000500;
int read(int &n)
{
char ch=' ';int q=0,w=1;
for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
if(ch=='-')w=-1,ch=getchar();
for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
int n,m;
int a[N];
db ans;
int d[N],S,T;
db D(int q,int w){return 1.0*(a[w]-a[q])/(w-q);}
int main()
{
int q,w;
read(n),read(m);
fo(i,1,n)a[i]=a[i-1]+read(a[i]);
S=T=1;
fo(i,m,n)
{
while(S<T&&D(d[S],i)<=D(d[S+1],i))S++;
ans=max(ans,D(d[S],i));
while(S<T&&D(d[T-1],d[T])>=D(d[T],i-m+1))T--;
d[++T]=i-m+1;
}
printf("%.4lf\n",ans);
return 0;
}