import cv2
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torch.utils.tensorboard import SummaryWriter
transform_to_tensor = transforms.ToTensor()
transform_size = transforms.Resize((32, 32))
transform_compose = transforms.Compose([transform_to_tensor, transform_size])
writer = SummaryWriter("logs")
if __name__ == '__main__':
train_set = datasets.CIFAR10(root='./datasets', download=True, transform=transform_compose, train=True)
test_set = datasets.CIFAR10(root='./datasets', download=True, transform=transform_compose, train=False)
Data = DataLoader(train_set, batch_size=4, shuffle=True, num_workers=0, drop_last=True)
step = 0
for data in Data:
imags, labels = data
writer.add_images("images", imags, step)
step = step + 1
writer.close()