Python-opencv学习第三十课:人脸检测
一、学习部分
记录笔者学习Python-opencv学习第三十课:人脸检测,代码资料来源于网络贾老师视频。
二、代码部分
1.引入库
代码如下:
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
2.完整代码
代码如下:
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
def read_demo():
image = cv.imread("D:/images/test.png") # BGR, 0~255
# cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", image)
cv.waitKey(0)
cv.destroyAllWindows()
def color_space_demo():
image = cv.imread("D:/images/test.png") # BGR, 0~255
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
hsv = cv.cvtColor(image, cv.COLOR_HSV2BGR) # H 0 ~180
# cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("gray", gray)
cv.imshow("hsv", hsv)
cv.waitKey(0)
cv.destroyAllWindows()
def mat_demo():
image = cv.imread("D:/images/test.png") # BGR, 0~255
h,w,c = image.shape
roi = image[60:200, 60:280, :]
blank = np.zeros((h, w, c), dtype=np.uint8)
# blank[60:200, 60:280, :] = image[60:200, 60:280, :]
blank = image # np.copy(image)
cv.imshow("blank", blank)
cv.imshow("roi", roi)
cv.waitKey(0)
cv.destroyAllWindows()
def pixel_demo():
image = cv.imread("D:/images/test.png") # BGR, 0~255
cv.imshow("input", image)
h,w,c = image.shape
for row in range(h):
for col in range(w):
b,g,r = image[row, col]
image[row, col] = (0, g, r)
cv.imshow("result", image)
cv.imwrite("D:/image_result.png", image)
cv.waitKey(0)
cv.destroyAllWindows()
def math_demo():
image = cv.imread("D:/images/test.png") # BGR, 0~255
cv.imshow("input", image)
h,w,c = image.shape
blank = np.zeros_like(image)
blank[:,:] = (2, 2, 2)
cv.imshow("blank", blank)
result = cv.multiply(image, blank)
cv.imshow("result", result)
cv.waitKey(0)
cv.destroyAllWindows()
def nothing(x):
print(x)
def adjust_lightness_demo():
image = cv.imread("D:/images/test.png") # BGR, 0~255
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.createTrackbar("lightness", "input", 0, 100, nothing)
cv.imshow("input", image)
blank = np.zeros_like(image)
while True:
pos = cv.getTrackbarPos("lightness", "input")
blank[:,:] = (pos, pos, pos)
# cv.imshow("blank", blank)
result = cv.add(image, blank)
cv.imshow("result", result)
c = cv.waitKey(1)
if c == 27:
break
cv.destroyAllWindows()
def adjust_contrast_demo():
image = cv.imread("D:/images/test.png") # BGR, 0~255
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.createTrackbar("lightness", "input", 0, 100, nothing)
cv.createTrackbar("contrast", "input", 100, 200, nothing)
cv.imshow("input", image)
blank = np.zeros_like(image)
while True:
light = cv.getTrackbarPos("lightness", "input")
contrast = cv.getTrackbarPos("contrast", "input") / 100
print("light: ", light, "contrast: ", contrast)
result = cv.addWeighted(image, contrast, blank, 0.5, light)
cv.imshow("result", result)
c = cv.waitKey(1)
if c == 27:
break
cv.destroyAllWindows()
def keys_demo():
image = cv.imread("D:/images/test.png") # BGR, 0~255
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", image)
while True:
c = cv.waitKey(1)
if c == 49: #1
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
cv.imshow("result", gray)
if c == 50: #2
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
cv.imshow("result", hsv)
if c == 51: # 3
invert = cv.bitwise_not(image)
cv.imshow("result", invert)
if c == 27:
break
cv.destroyAllWindows()
def color_table_demo():
colormap = [
cv.COLORMAP_AUTUMN,
cv.COLORMAP_BONE,
cv.COLORMAP_JET,
cv.COLORMAP_WINTER,
cv.COLORMAP_RAINBOW,
cv.COLORMAP_OCEAN,
cv.COLORMAP_SUMMER,
cv.COLORMAP_SPRING,
cv.COLORMAP_COOL,
cv.COLORMAP_PINK,
cv.COLORMAP_HOT,
cv.COLORMAP_PARULA,
cv.COLORMAP_MAGMA,
cv.COLORMAP_INFERNO,
cv.COLORMAP_PLASMA,
cv.COLORMAP_VIRIDIS,
cv.COLORMAP_CIVIDIS,
cv.COLORMAP_TWILIGHT,
cv.COLORMAP_TWILIGHT_SHIFTED ]
image = cv.imread("D:/images/canjian.jpg") # BGR, 0~255
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", image)
index = 0
while True:
dst = cv.applyColorMap(image, colormap[index%19])
index += 1
cv.imshow("color style", dst);
c = cv.waitKey(400)
if c == 27:
break
cv.destroyAllWindows()
def bitwise_demo():
b1 = np.zeros((400, 400, 3), dtype=np.uint8)
b1[:,:] = (255, 0, 255)
b2 = np.zeros((400, 400, 3), dtype=np.uint8)
b2[:,:] = (0, 255, 255)
cv.imshow("b1", b1);
cv.imshow("b2", b2);
dst1 = cv.bitwise_and(b1, b2)
dst2 = cv.bitwise_or(b1, b2)
cv.imshow("bitwise_and", dst1)
cv.imshow("bitwise_or", dst2)
cv.waitKey(0)
cv.destroyAllWindows()
def channels_split_demo():
b1 = cv.imread("D:/images/lena.jpg")
print(b1.shape)
cv.imshow("input", b1)
cv.imshow("b1", b1[:,:,2])
mv = cv.split(b1)
mv[0][:,:] = 255
result = cv.merge(mv)
dst = np.zeros(b1.shape, dtype=np.uint8)
cv.mixChannels([b1], [dst], fromTo=[2, 0, 1, 1, 0, 2])
cv.imshow("output4", dst)
cv.imshow("result",result)
cv.waitKey(0)
cv.destroyAllWindows()
def color_space_demo():
b1 = cv.imread("D:/images/greenback.png")
print(b1.shape)
cv.imshow("input", b1)
hsv = cv.cvtColor(b1, cv.COLOR_BGR2HSV)
cv.imshow("hsv", hsv)
mask = cv.inRange(hsv, (35, 43, 46), (77, 255, 255))
cv.bitwise_not(mask, mask)
result = cv.bitwise_and(b1, b1, mask=mask)
cv.imshow("result", result)
cv.waitKey(0)
cv.destroyAllWindows()
def pixel_stat_demo():
b1 = cv.imread("D:/images/1024.png")
print(b1.shape)
cv.imshow("input", b1)
print(np.max(b1[:,:,2]))
means, dev = cv.meanStdDev(b1)
print(means, "dev: ", dev)
cv.waitKey(0)
cv.destroyAllWindows()
def drawing_demo():
b1 = cv.imread("D:/images/1024.png")#np.zeros((512, 512, 3), dtype=np.uint8)
temp = np.copy(b1)
cv.rectangle(b1, (50, 50), (400, 400), (0, 0, 255), 4, 8, 0)
# cv.circle(b1, (200, 200), 100, (255, 0, 0), -1, 8, 0)
# cv.line(b1, (50, 50), (400, 400), (0, 255, 0), 4, 8, 0)
cv.putText(b1, "99% face", (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255), 2, 8)
cv.imshow("input", b1)
cv.waitKey(0)
cv.destroyAllWindows()
def random_color_demo():
b1 = np.zeros((512, 512, 3), dtype=np.uint8)
while True:
xx = np.random.randint(0, 512, 2, dtype=np.int)
yy = np.random.randint(0, 512, 2, dtype=np.int)
bgr = np.random.randint(0, 255, 3, dtype=np.int32)
print(bgr[0], bgr[1], bgr[2])
cv.line(b1, (xx[0], yy[0]), (xx[1], yy[1]), (np.int(bgr[0]), np.int(bgr[1]), np.int(bgr[2])), 1, 8, 0)
cv.imshow("input", b1)
c = cv.waitKey(10)
if c == 27:
break
cv.destroyAllWindows()
def polyline_drawing_demo():
canvas = np.zeros((512, 512, 3), dtype=np.uint8)
pts = np.array([[100, 100], [350, 100], [450, 280], [320, 450], [80, 400]], dtype=np.int32)
# cv.fillPoly(canvas, [pts], (255, 0, 255), 8, 0);
# cv.polylines(canvas, [pts], True, (0, 0, 255), 2, 8, 0);
cv.drawContours(canvas, [pts], -1, (255, 0, 0), -1);
cv.imshow("polyline", canvas);
cv.waitKey(0)
cv.destroyAllWindows()
b1 = cv.imread("D:/images/1024.png") # np.zeros((512, 512, 3), dtype=np.uint8)
img = np.copy(b1)
x1 = -1
x2 = -1
y1 = -1
y2 = -1
def mouse_drawing(event, x, y, flags, param):
global x1, y1, x2, y2
if event == cv.EVENT_LBUTTONDOWN:
x1 = x
y1 = y
if event == cv.EVENT_MOUSEMOVE:
if x1 < 0 or y1 < 0:
return
x2 = x
y2 = y
dx = x2 - x1
dy = y2 - y1
if dx > 0 and dy > 0:
b1[:,:,:] = img[:,:,:]
cv.rectangle(b1, (x1, y1), (x2, y2), (0, 0, 255), 2, 8, 0)
if event == cv.EVENT_LBUTTONUP:
x2 = x
y2 = y
dx = x2 - x1
dy = y2 - y1
if dx > 0 and dy > 0:
b1[:, :, :] = img[:,:,:]
cv.rectangle(b1, (x1, y1), (x2, y2), (0, 0, 255), 2, 8, 0)
x1 = -1
x2 = -1
y1 = -1
y2 = -1
def mouse_demo():
cv.namedWindow("mouse_demo", cv.WINDOW_AUTOSIZE)
cv.setMouseCallback("mouse_demo", mouse_drawing)
while True:
cv.imshow("mouse_demo", b1)
c = cv.waitKey(10)
if c == 27:
break
cv.destroyAllWindows()
def norm_demo():
image = cv.imread("D:/images/1024.png")
cv.namedWindow("norm_demo", cv.WINDOW_AUTOSIZE)
result = np.zeros_like(np.float32(image))
cv.normalize(np.float32(image), result, 0, 1, cv.NORM_MINMAX, dtype=cv.CV_32F)
cv.imshow("norm_demo", np.uint8(result*255))
cv.waitKey(0)
cv.destroyAllWindows()
def resize_demo():
image = cv.imread("D:/images/1024.png")
h, w, c = image.shape
cv.namedWindow("resize", cv.WINDOW_AUTOSIZE)
dst = cv.resize(image, (0, 0), fx=0.75, fy=0.75, interpolation=cv.INTER_NEAREST)
cv.imshow("resize", dst)
cv.waitKey(0)
cv.destroyAllWindows()
def flip_demo():
image = cv.imread("D:/images/1024.png")
cv.imshow("input", image)
cv.namedWindow("flip", cv.WINDOW_AUTOSIZE)
dst = cv.flip(image, -1)
cv.imshow("flip", dst)
cv.waitKey(0)
cv.destroyAllWindows()
def rotate_demo():
src = cv.imread("D:/images/dannis1.png")
cv.imshow("input", src)
h, w, c = src.shape
M = np.zeros((2, 3), dtype=np.float32)
alpha = np.cos(np.pi / 4.0)
beta = np.sin(np.pi / 4.0)
print("alpha : ", alpha)
# 初始旋转矩阵
M[0, 0] = alpha
M[1, 1] = alpha
M[0, 1] = beta
M[1, 0] = -beta
cx = w / 2
cy = h / 2
tx = (1 - alpha) * cx - beta * cy
ty = beta * cx + (1 - alpha) * cy
M[0, 2] = tx
M[1, 2] = ty
# change with full size
bound_w = int(h * np.abs(beta) + w * np.abs(alpha))
bound_h = int(h * np.abs(alpha) + w * np.abs(beta))
# 添加中心位置迁移
M[0, 2] += bound_w / 2 - cx
M[1, 2] += bound_h / 2 - cy
dst = cv.warpAffine(src, M, (bound_w, bound_h))
cv.imshow("rotate without cropping", dst)
cv.waitKey(0)
cv.destroyAllWindows()
def video_demo():
cap = cv.VideoCapture("D:/images/video/dushuhu.mp4")
w = cap.get(cv.CAP_PROP_FRAME_WIDTH)
h = cap.get(cv.CAP_PROP_FRAME_HEIGHT)
fps = cap.get(cv.CAP_PROP_FPS)
out = cv.VideoWriter("D:/test.mp4", cv.CAP_ANY, np.int(cap.get(cv.CAP_PROP_FOURCC)), fps, (np.int(w), np.int(h)), True)
print(w, h, fps)
while True:
ret, frame = cap.read()
if ret is not True:
break
cv.imshow("frame", frame)
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
cv.imshow("result", hsv)
out.write(hsv)
c = cv.waitKey(10)
if c == 27:
break
cv.destroyAllWindows()
out.release()
cap.release()
def image_hist():
image = cv.imread("D:/images/dannis1.png")
cv.imshow("input", image)
color = ('blue', 'green', 'red')
for i, color in enumerate(color):
hist = cv.calcHist([image], [i], None, [32], [0, 256])
print(hist)
plt.plot(hist, color=color)
plt.xlim([0, 32])
plt.show()
cv.waitKey(0)
cv.destroyAllWindows()
def hist2d_demo():
image = cv.imread("D:/images/dannis1.png")
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
hist = cv.calcHist([hsv], [0, 1], None, [48, 48], [0, 180, 0, 256])
dst = cv.resize(hist, (400, 400))
cv.normalize(dst, dst, 0, 255, cv.NORM_MINMAX)
cv.imshow("image", image)
dst = cv.applyColorMap(np.uint8(dst), cv.COLORMAP_JET)
cv.imshow("hist", dst)
plt.imshow(hist, interpolation='nearest')
plt.title("2D Histogram")
plt.show()
cv.waitKey(0)
cv.destroyAllWindows()
def eqhist_demo():
image = cv.imread("D:/images/cat.jpg", cv.IMREAD_GRAYSCALE)
cv.imshow("input", image)
result = cv.equalizeHist(image)
cv.imshow("result", result)
cv.waitKey(0)
cv.destroyAllWindows()
def blur_demo():
image = cv.imread("D:/images/cat.jpg")
cv.imshow("input", image)
result = cv.blur(image, (15, 15))
cv.imshow("result", result)
cv.waitKey(0)
cv.destroyAllWindows()
def conv_demo():
image = cv.imread("D:/images/cat.jpg")
cv.imshow("input", image)
result = cv.GaussianBlur(image, (0, 0), 15)
cv.imshow("result", result)
cv.waitKey(0)
cv.destroyAllWindows()
def bifilter_demo():
image = cv.imread("D:/images/example.png")
cv.imshow("input", image)
result = cv.bilateralFilter(image, 0, 100, 10)
cv.imshow("result", result)
cv.waitKey(0)
cv.destroyAllWindows()
model_bin = "E:/python/opencv/opencv_face_detector_uint8.pb"
config_text = "E:/python/opencv/opencv_face_detector.pbtxt";
def face_detection_demo():
net = cv.dnn.readNetFromTensorflow(model=model_bin, config=config_text)
cap = cv.VideoCapture("C:/Users/akaak/Videos/01.mp4")
while True:
ret, frame = cap.read()
h, w, c = frame.shape
if ret is not True:
break
# NCHW
blob = cv.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0), False, False)
net.setInput(blob)
outs = net.forward() # 1x1xNx7
for detection in outs[0, 0, :, :]:
score = float(detection[2])
if score > 0.5:
left = detection[3] * w
top = detection[4] * h
right = detection[5] * w
bottom = detection[6] * h
cv.rectangle(frame, (np.int(left), np.int(top)), (np.int(right), np.int(bottom)), (0, 0, 255), 2, 8, 0)
cv.imshow("frame", frame)
c = cv.waitKey(1)
if c == 27:
break
cv.destroyAllWindows()
cap.release()
if __name__ == "__main__":
face_detection_demo()
face_detector代码如下:
import cv2 as cv
model_bin = "E:/python/opencv/opencv_face_detector_uint8.pb"
config_text = "E:/python/opencv/opencv_face_detector.pbtxt";
def video_detection():
# load tensorflow model
net = cv.dnn.readNetFromTensorflow(model_bin, config=config_text)
capture = cv.VideoCapture("C:/Users/akaak/Videos/01.mp4")
# 人脸检测
while True:
e1 = cv.getTickCount()
ret, frame = capture.read()
if ret is not True:
break
h, w, c = frame.shape
blobImage = cv.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0), False, False);
net.setInput(blobImage)
cvOut = net.forward()
# Put efficiency information.
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
# 绘制检测矩形
for detection in cvOut[0,0,:,:]:
score = float(detection[2])
objIndex = int(detection[1])
if score > 0.5:
left = detection[3]*w
top = detection[4]*h
right = detection[5]*w
bottom = detection[6]*h
# 绘制
cv.rectangle(frame, (int(left), int(top)), (int(right), int(bottom)), (255, 0, 0), thickness=2)
cv.putText(frame, "score:%.2f"%score, (int(left), int(top)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
e2 = cv.getTickCount()
fps = cv.getTickFrequency() / (e2 - e1)
cv.putText(frame, label + (" FPS: %.2f"%fps), (10, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
cv.imshow('face-detection-demo', frame)
c = cv.waitKey(1)
if c == 27:
break
cv.destroyAllWindows()
if __name__ == "__main__":
video_detection()
三、运行结果



总结
本文介绍了笔者学习Python-opencv第三十课:人脸识别,感谢bilibili贾老师的视频,完成了大作业一部分任务,giao!(代码资料来源于网络贾老师视频)
本文介绍使用Python-opencv进行人脸检测的方法,包括加载模型、处理视频流并实时检测人脸等过程。通过具体代码实现,展示了如何利用深度学习模型进行高效的人脸检测。
5万+

被折叠的 条评论
为什么被折叠?



