主成分分析法(PCA)的理解(附python代码案例)
主成分分析(Principal Component Analysis, PCA)是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。换一种说法:PCA去除噪声和不重要的特征,将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息,而且可以提升数据处理的速度。为什么会出现PCA呢?因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据。
原创
2022-11-02 01:06:25 ·
35889 阅读 ·
12 评论