思路:这个题一开始为了考虑出所有可能的情况写的很麻烦。。。比如考虑改变当前点后对两端波峰波谷的影响之类的。后来发现其实就一个思路:
最优策略肯定是,当前这个点要么变成左端点一样的值,要么和右端点相等(a[i]=a[i−1]或者a[i]=a[i+1]a[i]=a[i-1]或者a[i]=a[i+1]a[i]=a[i−1]或者a[i]=a[i+1]),因为改变这个点最多只会影响相邻的两个点的状态,所以先记录没改之前[i-1,i+1]的波峰波谷个数,再看两次改变之后的波峰波谷个数,两次取个最小的(就是能消除掉最多的那一次),遍历一遍[2,n-1]找出消除量最大的就行了。
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include <queue>
#include<sstream>
#include <stack>
#include <set>
#include <bitset>
#include<vector>
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define endl '\n'
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 3e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
ll a[maxn];
ll n;
ll check(ll i)
{
if(i==1||i==n) return 0;
if(a[i]>a[i-1]&&a[i]>a[i+1]) return 1;
else if(a[i]<a[i-1]&&a[i]<a[i+1]) return 1;
return 0;
}
int main()
{
int kase;
cin>>kase;
int num = 1;
while(kase--)
{
n = read();
rep(i,1,n) a[i] = read();
ll cnt = 0;
rep(i,2,n-1)
{
if(a[i]>a[i-1]&&a[i]>a[i+1]) cnt++;
else if(a[i]<a[i-1]&&a[i]<a[i+1]) cnt++;
}
ll sub = 0;
rep(i,2,n-1)
{
ll pre = check(i-1) + check(i) + check(i+1);
ll t = a[i];
a[i] = a[i-1];
ll now1 = check(i-1) + check(i) + check(i+1);
a[i] = a[i+1];
ll now2 = check(i-1) + check(i) + check(i+1);
a[i] = t;
ll cur = pre - min(now1,now2);
sub = max(sub,cur);
}
cout<<max(cnt-sub,0)<<endl;
num++;
}
return 0;
}

博客给出Codeforces题的解题思路。最初考虑所有情况较麻烦,后发现最优策略是当前点要么变成左端点值,要么变成右端点值。通过记录改变前后[i-1,i+1]的波峰波谷个数,取两次改变中消除量最大的,遍历[2,n-1]找出最大消除量。
1294

被折叠的 条评论
为什么被折叠?



