在JUC并发编程01中说到了,什么是JUC、线程和进程、Lock锁、生产者和消费者问题、8锁现象、集合类不安全、Callable(简单)、常用辅助类、读写锁
https://blog.youkuaiyun.com/qq_45441466/article/details/117197861
10、阻塞队列
阻塞队列:BlockingDeque
什么情况下我们会使用阻塞队列:
多线程并发处理,线程池!
学会使用队列
添加、移除
四组API
方式 | 抛出异常 | 由返回值 | 阻塞等待 | 超时等待 |
---|---|---|---|---|
添加 | add | offer() | put() | offer(“d”, 2,TimeUnit.SECONDS) |
移除 | remove | poll() | take() | poll(2,TimeUnit.SECONDS) |
判断队列首 | element | peek() |
package com.panghl.juc.bq;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
/**
* @Author panghl
* @Date 2021/6/1 19:28
* @Description BlockQueue
**/
public class Test {
public static void main(String[] args) throws InterruptedException {
// test1();
// test2();
// test3();
test4();
}
/**
* 抛出异常
*/
public static void test1(){
//队列的大小
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.add("A"));
System.out.println(blockingQueue.add("B"));
System.out.println(blockingQueue.add("C"));
//IllegalStateException: Queue full 抛出异常!
//System.out.println(blockingQueue.add("d"));
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
//java.util.NoSuchElementException 抛出异常
// System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.peek());//检测队首元素
System.out.println(blockingQueue.element());//查看队首元素是谁
}
/**
* 有返回值
*/
public static void test2(){
BlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.offer("A"));
System.out.println(blockingQueue.offer("B"));
System.out.println(blockingQueue.offer("C"));
System.out.println(blockingQueue.offer("d")); //false 不抛出异常!
System.out.println(blockingQueue.element());//查看队首元素是谁
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.peek());//检测队首元素
System.out.println(blockingQueue.element());//查看队首元素是谁
}
/**
* 等待,阻塞(一直阻塞)
*/
public static void test3() throws InterruptedException {
BlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
//一直阻塞
blockingQueue.put("a");
blockingQueue.put("b");
blockingQueue.put("c");
blockingQueue.put("d"); //队列没有位置了,一直阻塞
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take()); //没有这个元素,一直阻塞
}
/**
* 超时等待
*/
public static void test4() throws InterruptedException {
BlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
//一直阻塞
blockingQueue.offer("a");
blockingQueue.offer("b");
blockingQueue.offer("c");
// blockingQueue.offer("d", 2,TimeUnit.SECONDS); //2s 后无位置,超时退出
blockingQueue.poll();
blockingQueue.poll();
blockingQueue.poll();
blockingQueue.poll(2,TimeUnit.SECONDS);//等待超过2s就退出
}
}
同步队列
没有容量,进去一个元素,必须等待取出来之后,才能往里面放一个元素!
put、take
package com.panghl.juc.bq;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.TimeUnit;
/**
* @Author panghl
* @Date 2021/6/1 20:21
* @Description 同步队列
* 和其他的BlockingQueue 不一样,SynchronousQueue 不存储元素
* put了一个元素,必须从里面先take取出来,否则不能再put进去值!
**/
public class SyncQueueDemo {
public static void main(String[] args) {
//同步队列
BlockingQueue<String> syncQueue = new SynchronousQueue<>();
new Thread(() -> {
try {
System.out.println(Thread.currentThread().getName() + "put 1");
syncQueue.put("1");
System.out.println(Thread.currentThread().getName() + "put 2");
syncQueue.put("2");
System.out.println(Thread.currentThread().getName() + "put 3");
syncQueue.put("3");
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "T1").start();
new Thread(() -> {
try {
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName() + "take 1");
syncQueue.take();
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName() + "take 2");
syncQueue.take();
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName() + "take 3");
syncQueue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "T2").start();
}
}
11、线程池(重点)
池化技术:程序的运行,本质:占用系统的资源!优化资源的使用!事先准备好一些资源,有人要用,就来我这里拿,用完之后还给我。
线程池的好处
1、降低资源的消耗
2、提高响应的速度
3、方便管理
线程复用,可以控制最大并发数、管理线程
线程池:三大方法
package com.panghl.juc.pool;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
* @Author panghl
* @Date 2021/6/1 20:37
* @Description 工具类 :3大方法
* 使用了线程池之后,使用线程池来创建线程
**/
public class Demo01 {
public static void main(String[] args) {
// ExecutorService threadPool = Executors.newSingleThreadExecutor();//单个线程
// ExecutorService threadPool = Executors.newFixedThreadPool(5); //创建一个固定的线程池的大小
ExecutorService threadPool = Executors.newCachedThreadPool(); //可伸缩的,遇强则强,遇弱则弱
try {
for (int i = 0; i < 10; i++) {
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName() + "ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
7大参数
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
//本质:ThreadPoolExecutor()
public ThreadPoolExecutor(int corePoolSize, //核心线程池大小
int maximumPoolSize, //最大核心线程池大小
long keepAliveTime, //超时了没有人调用就会释放
TimeUnit unit, //超时单位
BlockingQueue<Runnable> workQueue, //阻塞队列
ThreadFactory threadFactory, //线程工厂:创建线程的,一般不用动
RejectedExecutionHandler handler //拒绝策略) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?
null :
AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
手动创建一个线程池
四种拒绝策略
package com.panghl.juc.pool;
import java.util.concurrent.*;
/**
* @Author panghl
* @Date 2021/6/1 20:37
* @Description 工具类 :4种拒绝策略
new ThreadPoolExecutor.AbortPolicy() //银行满了,还有人进来,不处理这个人的,抛出异常
new ThreadPoolExecutor.CallerRunsPolicy() //哪来的去哪里! main线程执行
new ThreadPoolExecutor.DiscardPolicy() //队列满了,丢掉任务,不会抛出异常!
new ThreadPoolExecutor.DiscardOldestPolicy() //队列满了,尝试去和最早的竞争,也不会抛出异常!
**/
public class Demo02 {
public static void main(String[] args) {
// 自定义线程池!工作 ThreadPoolExecutor
ExecutorService threadPool = new ThreadPoolExecutor(
2,
5,
3,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy() //队列满了,尝试去和最早的竞争,也不会抛出异常!
);
try {
//最大承载:Deque + max
//超过 RejectedExecutionException
for (int i = 1; i <=9; i++) {
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName() + "ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
new ThreadPoolExecutor.AbortPolicy() //银行满了,还有人进来,不处理这个人的,抛出异常 new
ThreadPoolExecutor.CallerRunsPolicy() //哪来的去哪里! main线程执行 new
ThreadPoolExecutor.DiscardPolicy() //队列满了,丢掉任务,不会抛出异常! new
ThreadPoolExecutor.DiscardOldestPolicy() //队列满了,尝试去和最早的竞争,也不会抛出异常!
小结和扩展
最大线程到底该如何定义?
1、CPU 密集型 ; 几核,就是几,可以保持CPU的效率最高!
2、IO 密集型 ; 判断你程序中十分耗IO的线程。
程序 15个大型任务 io十分占用资源!
package com.panghl.juc.pool;
import java.util.concurrent.*;
/**
* @Author panghl
* @Date 2021/6/1 20:37
* @Description 工具类 :4种拒绝策略
new ThreadPoolExecutor.AbortPolicy() //银行满了,还有人进来,不处理这个人的,抛出异常
new ThreadPoolExecutor.CallerRunsPolicy() //哪来的去哪里! main线程执行
new ThreadPoolExecutor.DiscardPolicy() //队列满了,丢掉任务,不会抛出异常!
new ThreadPoolExecutor.DiscardOldestPolicy() //队列满了,尝试去和最早的竞争,也不会抛出异常!
**/
public class Demo02 {
public static void main(String[] args) {
// 自定义线程池!工作 ThreadPoolExecutor
//最大线程到底该如何定义?
//1、CPU 密集型 ; 几核,就是几,可以保持CPU的效率最高!
//2、IO 密集型 ; 判断你程序中十分耗IO的线程。
// 程序 15个大型任务 io十分占用资源!
//获取CPU的核数
System.out.println(Runtime.getRuntime().availableProcessors());
ExecutorService threadPool = new ThreadPoolExecutor(
2,
Runtime.getRuntime().availableProcessors(),
3,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy() //队列满了,尝试去和最早的竞争,也不会抛出异常!
);
try {
//最大承载:Deque + max
//超过 RejectedExecutionException
for (int i = 1; i <=9; i++) {
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName() + "ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
12、四大函数式接口(必须掌握)
@FunctionalInterface
public interface Runnable {
public abstract void run();
}
//超级多FunctionalInterface
//简化编程模型,在新版本的框架底层大量应用!
//foreach (消费者类的函数式接口)
代码测试:
Function函数式接口
package com.panghl.juc.function;
import java.util.function.Function;
/**
* @Author panghl
* @Date 2021/6/1 21:32
* @Description Function 函数式接口,有一个输入参数,有一个输出
* 只要是函数式接口可以用lambda表达式简化
**/
public class Demo01 {
public static void main(String[] args) {
//工具类:输出输入的值
// Function<String, String> function = new Function<String, String>() {
// @Override
// public String apply(String o) {
// return o;
// }
// };
Function<String, String> function = (str)->{return str;};
System.out.println(function.apply("1"));
}
}
断定型接口
package com.panghl.juc.function;
import java.util.function.Predicate;
/**
* @Author panghl
* @Date 2021/6/1 21:40
* @Description 断定性接口:有一个输入参数,返回值只能是 布尔值!
**/
public class Demo2 {
public static void main(String[] args) {
//判断字符串是否为null
// Predicate<String> predicate = new Predicate<String>() {
// @Override
// public boolean test(String o) {
// return o.isEmpty();
// }
// };
Predicate<String> predicate = (str)->{return str.isEmpty();};
System.out.println(predicate.test("1"));
}
}
Consumer 消费型接口
package com.panghl.juc.function;
import java.util.function.Consumer;
/**
* @Author panghl
* @Date 2021/6/1 21:48
* @Description Consumer 消费型接口:只有输入,没有返回值
**/
public class Demo03 {
public static void main(String[] args) {
// Consumer<String> consumer = new Consumer<String>() {
// @Override
// public void accept(String str) {
// System.out.println(str);
// }
// };
Consumer<String> consumer = (str) -> {
System.out.println(str);
};
consumer.accept("helo");
}
}
Supplier 供给型接口
package com.panghl.juc.function;
import java.util.function.Supplier;
/**
* @Author panghl
* @Date 2021/6/1 21:50
* @Description Supplier 供给型接口,没有参数,只有返回值
**/
public class Demo04 {
public static void main(String[] args) {
// Supplier<String> supplier = new Supplier<String>() {
// @Override
// public String get() {
// return "helo";
// }
// };
Supplier<String> supplier = ()->{return "adhelo";};
System.out.println(supplier.get());
}
}
13、Stream流式计算
package com.panghl.juc.stream;
import java.util.Arrays;
import java.util.List;
/**
* @Author panghl
* @Date 2021/6/1 21:58
* @Description 题目要求:一分钟内完成此题,只能用一行代码实现!
* 1、ID必须是偶数
* 2、年龄必须大于23岁
* 3、用户名转为大写字母
* 4、用户名字母倒着排序
* 5、只输出一个用户!
**/
public class Test {
public static void main(String[] args) {
User u1 = new User(1, "a", 21);
User u2 = new User(2, "b", 22);
User u3 = new User(3, "c", 23);
User u4 = new User(4, "d", 24);
User u5 = new User(5, "e", 25);
List<User> users = Arrays.asList(u1, u2, u3, u4, u5);
users.stream()
.filter((u) -> {
return u.getId() % 2 == 0;
})
.filter((u)->{
return u.getAge()>23;
})
.map((u)->{return u.getName().toUpperCase();})
.sorted((o1,o2)->{return o1.compareTo(o2);})
.limit(1)
.forEach(System.out::println);
}
}
14、ForkJoin
什么是ForkJoin
ForkJoin在JDK1.7,并执行任务!提高效率。大数据量!
大数据:Map Reduce(把大任务拆分为小任务)
ForkJoin特点:工作窃取
这个里面维护的都是双端队列
ForkJoin
package com.panghl.juc.forkjoin;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
/**
* @Author panghl
* @Date 2021/6/2 22:30
* @Description 求和计算的任务!
* 3000 6000(ForkJoin) 9000(Stream并行流)
* 如何使用forkjoin ?
* 1、forkjoinPool 通过它来执行
* 2、计算任务 forkjoinPool.execute(ForkJoinTask task)
* 3、要继承ForkJoinTask
**/
public class ForkJoinDemo extends RecursiveTask<Long> {
private Long start; //1
private Long end; //1990900000
//临界值
private Long temp = 10000L;
public ForkJoinDemo(Long start, Long end) {
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
if ((end - start) > temp) {
//分支合并计算
Long sum = 0L;
for (Long i = start; i < end; i++) {
sum += i;
}
System.out.println(sum);
return sum;
} else { //forkjoin
long middle = (start + end) / 2; //中间值
ForkJoinDemo forkJoinDemo1 = new ForkJoinDemo(start, middle);
forkJoinDemo1.fork(); //拆分任务,把任务压入线程队列
ForkJoinDemo forkJoinDemo2 = new ForkJoinDemo(middle + 1, end);
forkJoinDemo2.fork();
return forkJoinDemo1.join() + forkJoinDemo2.join();
}
}
}
package com.panghl.juc.forkjoin;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
/**
* @Author panghl
* @Date 2021/6/2 22:45
* @Description TODO
**/
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
test3();
}
public static void test1(){
Long sum = 0L;
long start = System.currentTimeMillis();
for (Long i = 1L; i < 10_0000_000; i++) {
sum+=i;
}
long end = System.currentTimeMillis();
System.out.println("sum="+"时间:"+(end-start));
}
//会使用ForkJoin
public static void test2() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinDemo forkJoinDemo = new ForkJoinDemo(0L,10_0000_000L);
ForkJoinTask<Long> forkJoinTask = forkJoinPool.submit(forkJoinDemo);
Long aLong = forkJoinTask.get();
long end = System.currentTimeMillis();
System.out.println("sum="+aLong+"时间:"+(end-start));
}
//Stream并行流
public static void test3(){
long start = System.currentTimeMillis();
long reduce = LongStream.rangeClosed(0L, 10_0000_000L).parallel().reduce(0, Long::sum);
long end = System.currentTimeMillis();
System.out.println("sum="+reduce+"时间:"+(end-start));
}
}
15、异步回调
package com.panghl.juc.future;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
/**
* @Author panghl
* @Date 2021/6/2 23:02
* @Description 异步调用: Ajax
* 异步执行 成功回调
**/
public class Demo01 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//发送一个请求--》没有返回值的runAsync 异步回调
// CompletableFuture<Void> completableFuture = CompletableFuture.runAsync(()->{
// try {
// TimeUnit.SECONDS.sleep(2);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// System.out.println(Thread.currentThread().getName()+"休眠结束===>runSync=>Void");
// });
// System.out.println("1111");
// completableFuture.get(); //获取阻塞执行结果
//有返回值的 supplyAsync 异步回调
//ajax,成功和失败的回调
//返回的是错误信息;
CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(()->{
int i = 1/0;
System.out.println(Thread.currentThread().getName()+"休眠结束===>runSync=>Integer");
return 1024;
});
completableFuture.whenComplete((t,u)->{
System.out.println("t=>"+t); //正常的返回结果
System.out.println("u=>"+u); //错误信息:java.util.concurrent.CompletionException: java.lang.ArithmeticException: / by zero
}).exceptionally((e)->{
System.out.println(e.getMessage());
return 233; //可以获取到错误的返回结果
});
Integer integer = completableFuture.get();
System.out.println(integer);
}
}
16、JMM
Volatile是Java虚拟机提供轻量级的同步机制
1、保证可见性
2、不保证原子性
3、禁止指令重排
什么是JMM?
JMM:Java内存模型,不存在的东西,概念!约定!
关于JMM的一些同步的约定:
1、线程解锁前,必须把共享变量立刻刷回主存。
2、线程加锁前,必须读取主存中的最新值到工作内存中!
3、加锁和解锁是同一把锁
线程 工作内存、主内存
8中操作:
问题:程序不知道主内存的值被修改了。
package com.panghl.juc.volatil;
import java.util.concurrent.TimeUnit;
/**
* @Author panghl
* @Date 2021/6/2 23:36
* @Description
**/
public class JMMDemo {
private static int num = 0;
public static void main(String[] args) throws InterruptedException {
new Thread(() -> {//线程1
while (num == 0) {
}
}).start();
TimeUnit.SECONDS.sleep(2);
num = 1;
System.out.println(num);
}
}
18.Volatile
1、保证了可见性
package com.panghl.juc.volatil;
import java.util.concurrent.TimeUnit;
/**
* @Author panghl
* @Date 2021/6/2 23:36
* @Description
**/
public class JMMDemo {
private static volatile int num = 0;
public static void main(String[] args) throws InterruptedException {
new Thread(() -> {//线程1
while (num == 0) {
}
}).start();
TimeUnit.SECONDS.sleep(2);
num = 1;
System.out.println(num);
}
}
2、不保证原子性
原子性:不可分割
线程A在执行任务的时候,不能被打扰,也不能被分割。要么同时成功,要嘛同时失败。
package com.panghl.juc.volatil;
/**
* @Author panghl
* @Date 2021/6/2 23:44
* @Description 不保证原子性
**/
public class VDemo02 {
private volatile static int num = 0;
private static void add(){
num++;
}
public static void main(String[] args) {
for (int i = 0; i < 20; i++) {
new Thread(()->{
for (int i1 = 0; i1 < 1000; i1++) {
add();
}
}).start();
}
while (Thread.activeCount()>2){//main gc 默认执行
Thread.yield();
}
System.out.println(Thread.currentThread().getName()+"==>num:"+num);
}
}
如果不加lock和synchronized,怎么样保证原子性?
使用原子类,解决原子性问题
package com.panghl.juc.volatil;
import java.util.concurrent.atomic.AtomicInteger;
/**
* @Author panghl
* @Date 2021/6/2 23:44
* @Description 不保证原子性
**/
public class VDemo02 {
//原子类的 Integer
private volatile static AtomicInteger num = new AtomicInteger();
private static void add(){
// num++; //你是一个原子性操作
num.getAndIncrement(); //AtomicInteger+1 的方法, CAS
}
public static void main(String[] args) {
for (int i = 0; i < 20; i++) {
new Thread(()->{
for (int i1 = 0; i1 < 1000; i1++) {
add();
}
}).start();
}
while (Thread.activeCount()>2){//main gc 默认执行
Thread.yield();
}
System.out.println(Thread.currentThread().getName()+"==>num:"+num);
}
}
这些类的底层都直接和操作系统挂钩!在内存中修改值!Unsafe类是一个很特殊的存在!
3、指令重排
什么是指令重排:你写的程序,计算机并不是按照你写的那样去执行的。
源代码–》编译器优化的重排–》指令并行也可能会重排–》内存系统也会重排–》执行
处理器在进行指令重排的时候,考虑:数据之间的依赖性!
int x =1; //1
int y = 2; //2
x=x+5; //3
y=x*x; //4
我们所期望的:1234 结果2134 1324
可能造成影响的结果: ab xy 这四个值默认都是0;
线程A | 线程B |
---|---|
x=a | y=b |
b=1 | a=2 |
正常的结果:x=0;y=0 ;但是可能由于指令重排
线程A | 线程B |
---|---|
b=1 | a=2 |
x=a | y=b |
指令重排导致的诡异结果:x=2;y=1;
volatile 可以避免指令重排
内存屏障。CPU指令。作用:
1、保证特定的操作的执行顺序!
2、可以保证某些变量的内存可见性(利用这些特性volatile实现了可见性)
volatile是可以保证可见性。不能保证原子性,由于内存屏障,可以保证避免指令重排的现象产生!
20、深入理解CAS
什么是CAS
大厂必须要深入研究底层!有所突破!修内功,操作系统,计算机网络原理
Unsafe类
CAS: 比较当前工作内存中的值和主内存的值,如果这个值是期望的,那么执行操作!如果不是就一直循环。
缺点:
1、循环会耗时
2、一次性只能保证一个共享变量的原子性
3、ABA问题
CAS:ABA问题(狸猫换太子)
package com.panghl.juc.cas;
import java.util.concurrent.atomic.AtomicInteger;
/**
* @Author panghl
* @Date 2021/6/3 21:33
* @Description TODO
**/
public class CASDemo {
//CAS compareAndSet: 比较并交换!
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
// 期望、更新
// public final boolean compareAndSet(int expect, int update)
//如果我期望的值达到了,name就更新,否则,就不更新,CAS 是CPU的并发原语
atomicInteger.compareAndSet(2020,2021);
System.out.println(atomicInteger.get());
// ===============捣乱的线程============
System.out.println(atomicInteger.compareAndSet(2020,2021));
System.out.println(atomicInteger.get());
System.out.println(atomicInteger.compareAndSet(2021,2020));
System.out.println(atomicInteger.get());
// ===============期望的线程============
System.out.println(atomicInteger.compareAndSet(2020,6666));
System.out.println(atomicInteger.get());
}
}
21、原子引用
解决ABA问题,引入原子引用!对应的思想:乐观锁
带版本号的原子操作。
注意
package com.panghl.juc.cas;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.atomic.AtomicStampedReference;
/**
* @Author panghl
* @Date 2021/6/3 21:33
* @Description TODO
**/
public class CASDemo {
//CAS compareAndSet: 比较并交换!
public static void main(String[] args) {
// AtomicInteger atomicInteger = new AtomicInteger(2020);
//int Integer 注意,如果泛型是一个包装类,注意对象的引用问题!!!
//正常在业务操作,这里面比较的都是一个个对象
AtomicStampedReference<Integer> atomicReference = new AtomicStampedReference<>(1,1);
// 乐观锁的原理相同!!!
new Thread(()->{
int stamp = atomicReference.getStamp(); //获取版本号
System.out.println("A1->"+stamp);
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(atomicReference.compareAndSet(1, 2, atomicReference.getStamp(), atomicReference.getStamp() + 1));
System.out.println("A2->"+atomicReference.getStamp());
System.out.println(atomicReference.compareAndSet(2, 1, atomicReference.getStamp(), atomicReference.getStamp() + 1));
System.out.println("A2->"+atomicReference.getStamp());
},"A").start();
new Thread(()->{
int stamp = atomicReference.getStamp(); //获取版本号
System.out.println("B1->"+stamp);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(atomicReference.compareAndSet(1, 3, stamp, stamp + 1));
System.out.println("B2->"+atomicReference.getStamp());
},"B").start();
}
}
21、各种锁的理解
1、公平锁、非公平锁
公平锁:非常公平,不能够插队,必须先来后到!
非公平锁:非常不公平,可以插队(默认非公平锁)
2、可重入锁
可重入锁(递归锁)
Synchronized版本
package com.panghl.juc.lock;
/**
* @Author panghl
* @Date 2021/6/3 22:16
* @Description Synchronized
**/
public class Demo01 {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(()->{
phone.sms();
},"A").start();
new Thread(()->{
phone.sms();
},"B").start();
}
}
class Phone{
public synchronized void sms(){
System.out.println(Thread.currentThread().getName()+"sms");
call(); //这里也有锁
}
public synchronized void call(){
System.out.println("打电话");
}
}
Lock版本
package com.panghl.juc.lock;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* @Author panghl
* @Date 2021/6/3 22:19
* @Description Lock
**/
public class Demo02 {
public static void main(String[] args) {
Phone2 phone = new Phone2();
new Thread(() -> {
phone.sms();
}, "A").start();
new Thread(() -> {
phone.sms();
}, "B").start();
}
}
class Phone2 {
Lock lock = new ReentrantLock();
public void sms() {
lock.lock();// lock 锁必须配对,否则就会死在里面
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + "sms");
call(); //这里也有锁
} catch (Exception e) {
e.getMessage();
} finally {
lock.unlock();
lock.unlock();
}
}
public void call() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() +"打电话");
} catch (Exception e) {
e.getMessage();
} finally {
lock.unlock();
}
}
}
3、自旋锁
自定义锁测试:
package com.panghl.juc.lock;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReference;
/**
* @Author panghl
* @Date 2021/6/3 22:26
* @Description 自旋锁
**/
public class SpinlockDemo {
// int 0
// Thread null
AtomicReference<Thread> atomicReference = new AtomicReference<>();
//加锁
public void myLock(){
Thread thread = Thread.currentThread();
System.out.println(thread.getName()+"==>lock");
// 自旋锁
while (!atomicReference.compareAndSet(null,thread)){
System.out.println("自旋中....");
}
}
//解锁
public void myUnLock(){
Thread thread = Thread.currentThread();
System.out.println(thread.getName()+"==>myUnlock");
atomicReference.compareAndSet(thread,null);
}
}
package com.panghl.juc.lock;
import java.util.concurrent.TimeUnit;
/**
* @Author panghl
* @Date 2021/6/3 22:30
* @Description
**/
public class TestSpinLock {
public static void main(String[] args) {
//底层使用的自旋锁CAS
SpinlockDemo spinlockDemo = new SpinlockDemo();
new Thread(()->{
spinlockDemo.myLock();
try {
TimeUnit.SECONDS.sleep(3);
}catch (Exception e){
e.getMessage();
}finally {
spinlockDemo.myUnLock();
}
},"A1").start();
new Thread(()->{
spinlockDemo.myLock();
try {
TimeUnit.SECONDS.sleep(1);
}catch (Exception e){
e.getMessage();
}finally {
spinlockDemo.myUnLock();
}
},"A2").start();
}
}
4、死锁
死锁测试,怎么排除死锁:
package com.panghl.juc.lock;
import java.util.concurrent.TimeUnit;
/**
* @Author panghl
* @Date 2021/6/3 22:37
* @Description 死锁
**/
public class DeadLockDemo {
public static void main(String[] args) {
String lockA="lockA";
String lockB="lockB";
new Thread(new MyThread(lockA,lockB),"A1").start();
new Thread(new MyThread(lockB,lockA),"A2").start();
}
}
class MyThread implements Runnable{
private String lockA;
private String lockB;
public MyThread(String lockA, String lockB) {
this.lockA = lockA;
this.lockB = lockB;
}
@Override
public void run() {
synchronized (lockA){
System.out.println(Thread.currentThread().getName()+"lock:"+lockA+"=>get"+lockB);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lockB){
System.out.println(Thread.currentThread().getName()+"lock:"+lockB+"=>get"+lockA);
}
}
}
}
解决问题
1、使用 jps -l 定位进程号
2、使用 jstack 进程号 找到死锁问题