使用Java代码远程提交flink任务

该博客展示了如何在Java中使用Flink Rest API来提交任务到Flink集群。代码详细地配置了JobManager地址、端口,并构建了任务提交参数,包括jar包路径、并行度和入口类名。最后,通过RestClusterClient提交任务并获取JobID。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

public class FlinkTask {

    private String JobManagerAddress = "xxxx";

    public JobID runTask(String jarPath, int parallelism, String entryPointClassName) {
        RestClusterClient<StandaloneClusterId> client = null;
        JobID jobId = null;
        try {
            // 集群信息
            Configuration configuration = new Configuration();
            configuration.setString(JobManagerOptions.ADDRESS, JobManagerAddress);
            configuration.setInteger(JobManagerOptions.PORT, 6123);
            configuration.setInteger(RestOptions.PORT, 8081);
            client = new RestClusterClient<>(configuration, StandaloneClusterId.getInstance());
            //jar包存放路径
            File jarFile = new File(jarPath);
            SavepointRestoreSettings savepointRestoreSettings = SavepointRestoreSettings.none();
            //构建提交任务参数
            PackagedProgram program = PackagedProgram
                    .newBuilder()
                    .setConfiguration(configuration)
                    .setEntryPointClassName(entryPointClassName)
                    .setJarFile(jarFile)
                    .setSavepointRestoreSettings(savepointRestoreSettings).build();
            //创建任务
            JobGraph jobGraph = PackagedProgramUtils.createJobGraph(program, configuration, parallelism, false);
            //提交任务
            CompletableFuture<JobID> result = client.submitJob(jobGraph);
            jobId = result.get();

        } catch (Exception e) {
            e.printStackTrace();
        }
        return jobId;
    }

导入依赖

<properties>
        <java.version>1.8</java.version>
        <flink.version>1.13.5</flink.version>
        <scala.binary.version>2.11</scala.binary.version>
</properties>
<dependencies>
        <!-- Apache Flink dependencies -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-core</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-jdbc_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-sql-connector-kafka_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-json</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>${flink.version}</version>
        </dependency>
</dependencies>

参数格式参考:

{

    "jarPath":"C:\\flink-1.13.5\\examples\\streaming\\WordCount.jar",

    "parallelism":1,

    "entryPointClassName":"org.apache.flink.streaming.examples.wordcount.WordCount"

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值