算法复杂度分析

本文介绍了数据结构和算法的基本概念,并详细解析了算法复杂度分析的重要性及其种类,包括最坏情况、平均情况及最佳情况。此外,还介绍了如何使用渐近记号如O、Θ和Ω来表示算法的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 何为数据结构?何为算法?

简单来说,数据结构就是数据的存储方式,比如数组就是把数据存在一段连续的内存上,而链表则是通过指针的关联将数据存在任意可用的内存上;栈是先进后出,队列是先进先出。
而算法则是对这些数据的操作方法,比如数据的插入、查找、删除、排序等。
二者相辅相成,互为一体,数据结构为算法服务,而算法要在指定数据结构上进行操作。

2. 复杂度分析?

学习数据结构和算法的目的是为了在实际应用的时候更加优化地利用内存,提高程序运行效率,而复杂度分析则是给我们提供一个衡量代码质量好坏的标准。
如果我们在不运行程序的情况下就可以定性知道代码的内存占用和时间消耗,这将会给我们提供一个当前程序的总体评估和未来的改进方向。
直接运行程序就可以知道算法的执行时间和占用内存,但这个过程往往会受到运行环境和数据规模的影响,因此,我们需要一个不用进行具体测试就可以粗略估计算法执行效率的方法,这就是复杂度分析。

算法分析的种类:

最坏情况(Worst Case):任意输入规模的最大运行时间。(Usually)
平均情况(Average Case):任意输入规模的期待运行时间。(Sometimes)
最佳情况(Best Case):通常最佳情况不会出现。(Bogus)
例如,在一个长度为 n 的列表中顺序搜索指定的值,则

最坏情况:n 次比较
平均情况:n/2 次比较
最佳情况:1 次比较
而实际中,我们一般仅考量算法在最坏情况下的运行情况,也就是对于规模为 n 的任何输入,算法的最长运行时间。这样做的理由是:

一个算法的最坏情况运行时间是在任何输入下运行时间的一个上界(Upper Bound)。
对于某些算法,最坏情况出现的较为频繁。
大体上看,平均情况通常与最坏情况一样差。
算法分析要保持大局观(Big Idea),其基本思路:

忽略掉那些依赖于机器的常量。
关注运行时间的增长趋势。
比如:T(n) = 73n3 + 29n3 + 8888 的趋势就相当于 T(n) = Θ(n3)。

渐近记号(Asymptotic Notation)通常有 O、 Θ 和 Ω 记号法。Θ 记号渐进地给出了一个函数的上界和下界,当只有渐近上界时使用 O 记号,当只有渐近下界时使用 Ω 记号。尽管技术上 Θ 记号较为准确,但通常仍然使用 O 记号表示。

使用 O 记号法(Big O Notation)表示最坏运行情况的上界。例如,

线性复杂度 O(n) 表示每个元素都要被处理一次。
平方复杂度 O(n2) 表示每个元素都要被处理 n 次。

https://zhuanlan.zhihu.com/p/95079492

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值