Python数据分析8-时间序列

本文深入探讨Python中的时间序列分析,涵盖datetime模块的使用,时间序列基础,日期、时期的处理,频率转换与重采样,并通过自行车租赁数据案例进行实战演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     

目录

8.1datetime模块

8.1.1datetime的构造

8.1.2数据转换

8.2时间序列基础

8.2.1时间序列构造

8.2.2索引与切片

8.3日期

8.3.1日期范围

8.3.2频率与移动

​8.4时期

8.4.1时期基础

8.4.2频率转换

8.4.3时期数据转换

 8.5频率转换与重采样

8.5.1重采样

8.5.2降采样

​8.5.3升采样

8.6综合示例-自行车租赁数据

8.6.1数据来源

8.6.2定义问题

8.6.3数据清洗

8.6.4数据探索


        在许多行业中,时间序列数据是一种重要的结构化数据类型。本章主要讲解datetime的数据类型及字符串的想换转换方法;时间序列的构造和使用放啊;日期和时期数据的使用方法;时间序列的频率转换与重采样。最后通过一个案例,讲解时间序列数据的处理与分析方法。

8.1datetime模块

        本节将讲解Python标准库中的datetime库的使用方法,以及datetime库的数据和字符串数据的转换方法。

8.1.1datetime的构造

        Python的标准库datetime可用于创建时间数据类型。如下表所示为datetime库的时间数据类型。

类型 使用说明
date 日期(年月日)
time 时间(时分秒毫秒)
datetime 日期和时间
timedelta 两个datetime的差(日秒毫秒)

        其中date类数据可用于创建日期类数据,通过年、月、日来进行存储,如下图

         time类数据用于存储时间数据,通过时、分、秒、毫秒进行存储,如下图

         datetime类数据可以看做时date类和time类的组合,通过now方法可以查看当前的时间,如下图

         timedelta类数据为两个datetime类数据的差,也可以通过daetime类对象加或减去timedelta类对象,以此获取新的datetime类对象,如下图

8.1.2数据转换

        在数据分析中,字符串和datetime类数据需要进行转换,通过str方法可以直接将datetime类数据转换为字符串

         如果需要将datetime类数据转换为特定格式的字符串数据(格式化),需要使用strftime方法,如下图

         下表所示为部分格式化编码

代码 使用说明
%Y 4位数的年
%y 2位数的年
%m 2位数的月
%d 2位数的填
%H 时(24小时制)
%I 时(12小时制)
%M 2位数的分
%W 每年的第几周,星期一为每周第一天

        通过datetime.strptime方法可将字符串格式转换为datetime数据类型,如下图

         在pandas中,可通过to_datetime方法将一列字符串数据转换为时间数据。以前面章节的示例为例,可以看出HireDate字段的数据类型为字符串

        通过to_datetime方法可以将HireDate字段进行转换,如下图,该数据为TimeStamp (时间戳)

8.2时间序列基础

        时间序列是以时间戳为索引的Series或DataFrame。本节将讲解时间序列的构造方法,以及时间序列的索引和切片

8.2.1时间序列构造

        pandas中的时间序列指的是以时间数据为索引的Series或DataFrame。如下图,为创建一个时间序列的Series

         创建的这个时间序列Series的索引为DatetimeIndex对象,如下图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值