Language:
Red and Black
Description
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can’t move on red tiles, he can move only on black tiles.
Write a program to count the number of black tiles which he can reach by repeating the moves described above.
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.
There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.
‘.’ - a black tile
‘#’ - a red tile
‘@’ - a man on a black tile(appears exactly once in a data set)
The end of the input is indicated by a line consisting of two zeros.
Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).
Sample Input
6 9
…#.
…#
…
…
…
…
…
#@…#
.#…#.
11 9
.#…
.#.#######.
.#.#…#.
.#.#.###.#.
.#.#…@#.#.
.#.#####.#.
.#…#.
.#########.
…
11 6
…#…#…#…
…#…#…#…
…#…#…###
…#…#…#@.
…#…#…#…
…#…#…#…
7 7
…#.#…
…#.#…
###.###
…@…
###.###
…#.#…
…#.#…
0 0
Sample Output
45
59
6
13****
#include<stdio.h>
#include<string.h>
const int MAXN=21;
int step=0;
int row,line;
char picture[MAXN][MAXN];
int dx[4]={0,1,0,-1},dy[4]={1,0,-1,0};
//操作指南0:向下 1:右 2:上 3:左
void dfs(int x,int y);
int main()
{int x,y;
scanf("%d%d",&line,&row);
while(row!=0&&line!=0)
{memset(picture,0,MAXN*MAXN*sizeof(char));
getchar();
for(int i=0;i<row;i++)
{for(int j=0;j<line;j++)
{scanf("%c",&picture[i][j]);
//get the position of @
if(picture[i][j]=='@') {x=j;y=i;}
}
getchar();
}
step=0;
dfs(x,y);
printf("%d\n",step+1);
scanf("%d%d",&line,&row);}
return 0;
}
void dfs(int x,int y){
picture[y][x]='#';
if(y+1<row&&picture[y+dy[0]][x+dx[0]]!='#')
{ step++;
dfs(x+dx[0],y+dy[0]);
}
if(x+1<line&&picture[y+dy[1]][x+dx[1]]!='#')
{step++;
dfs(x+dx[1],y+dy[1]);
}
if(y-1>=0&&picture[y+dy[2]][x+dx[2]]!='#')
{
step++;
dfs(x+dx[2],y+dy[2]);
}
if(x-1>=0&&picture[y+dy[3]][x+dx[3]]!='#')
{
step++;
dfs(x+dx[3],y+dy[3]);}
}//递归可以回退