图嵌入表示学习—Node Embeddings随机游走

文章介绍了随机游走在图机器学习中的作用,特别是如何通过随机游走进行节点编码。随机游走策略用于生成节点序列,然后通过优化算法如softmax计算节点间概率,最终学习到节点的向量表示。负样本采样用于降低计算复杂性,提高效率。整个过程是无监督或自监督的,适用于图数据的特征学习。

Random Walk Approaches for Node Embeddings

一、随机游走基本概念

请添加图片描述
想象一个醉汉在图中随机的行走,其中走过的节点路径就是一个随机游走序列

随机行走可以采取不同的策略,如行走的方向、每次行走的长度等。

二、图机器学习与NLP的关系

请添加图片描述

从图与NLP的类比关系可以看出,图机器学习和NLP相似度很高,了解两者的类比关系可以加深对图机器学习的理解。

随机游走的根本目标是对图中的各个节点进行编码,将图中的各个节点编码成可供下游任务使用的向量,即编码器。因此,随机游走是一个无监督/自监督算法,没有使用任何标签。

三、概念定义(可以先看后面,用到时再看概念)

请添加图片描述

  1. z u \mathbf{z} _u zu:期望获得的节点 u u u的嵌入向量,是算法的目标

  2. P ( v ∣ z u ) P(v|\mathbf{z} _u) P(vzu):从 u u u节点出发的随机游走序列经过 v v v节点的概率。

    如果 u u u节点和 v v v节点出现在同一个随机游走序列,那么 P P P值应该高;如果 u u u节点和 v v v节点没有出现在同一个随机游走序列,那么期望 P P P应该低,这也是之后优化算法的根本思路。

  3. P ( v ∣ z u ) P(v|\mathbf{z} _u) P(vzu)的计算:本文使用softmax计算 P P P值,具体计算方法在“五、优化算法”中,这里只介绍两个非线性函数

    • softmax:将k维的向量的值通过softmax改为k维的概率值,其中:
      σ ( z ) [ i ] = e z [ i ] ∑ j = 1 K e z [ j ] \sigma(z)[i]=\frac{e^{z[i]}}{\sum_{j=1}^K e^{z[j]}} σ(z)[i]

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值