构建自定义Tensorflow镜像时用到的链接地址整理

NVIDIA相关:

  1. NVIDIA CUDA镜像的docker hub:https://hub.docker.com/r/nvidia/cuda/tags?page=&page_size=&ordering=&name=12.4.1
  2. NVIDIA 构建的Tensorflow镜像包:https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/overview.html
  3. CUDA ToolKits 下载地址:https://developer.nvidia.com/cuda-toolkit-archive

Tensorflow相关:

  1. Tensorflow官网安装地址:https://www.tensorflow.org/install/pip?hl=zh-cn
  2. Tensorflow官网gpu支持:https://www.tensorflow.org/install/gpu?hl=zh-cn#software_requirements
  3. Tensorflow docker hub地址:https://hub.docker.com/r/tensorflow/tensorflow/tags?page=&page_size=&ordering=&name=
  4. Tensorflow Github地址:https://github.com/tensorflow/tensorflow/blob/v2.15.0/tensorflow/tools/ci_build/README.md

TensorRT相关:

  1. 安装指南:https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
  2. TensorRT下载地址:https://developer.nvidia.com/tensorrt/download
  3. TensorRT 报错TF-TRT Warning: Could not find TensorRT解决:https://blog.youkuaiyun.com/weixin_45710350/article/details/140232873?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-0-140232873-blog-132561059.235、 https://github.com/tensorflow/tensorflow/issues/61986
  4. TensorRT pip源地址:https://pypi.org/project/tensorrt-cu12/#history、https://pypi.org/simple/tensorrt/

TensorBoard相关

  1. 教程地址:https://tensorflow.google.cn/tensorboard/get_started?hl=zh-cn

python相关

  1. miniconda的安装包地址(里面内置了不同版本的python):https://repo.anaconda.com/miniconda/
  2. 官方源:https://pypi.org/
  3. 增加国内镜像源 conda/pip:
    # conda/pip增加国内源 RUN conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ && \ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ && \ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ && \ conda config --set show_channel_urls yes && \ pip config set global.index-url http://mirrors.aliyun.com/pypi/simple/ && \ pip config set global.trusted-host mirrors.aliyun.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值