前言
这里记录一下陈菜菜的刷题记录,主要应对25秋招、春招
个人背景
211CS本+CUHK计算机相关硕,一年车企软件开发经验
代码能力:有待提高
常用语言:C++
系列文章目录
第44天 :第九章 动态规划part07
`
文章目录
一、今日任务
● 198.打家劫舍
● 213.打家劫舍II
● 337.打家劫舍III
二、详细布置
198.打家劫舍
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 400
样例1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4
思路
这题简单题。
实战
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size()==1)
return nums[0];
if(nums.size()==2)
return max(nums[0],nums[1]);
vector<int> dp(nums.size(),0);
dp[0]=nums[0];
dp[1]=max(dp[0],nums[1]);
for(int i=2;i<nums.size();i++){
dp[i]=max(dp[i-1],dp[i-2]+nums[i]);
}
return dp[nums.size()-1];
}
};
213.打家劫舍II
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
样例1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
思路
这题和上一题类似,但是多考虑两种情况即可。一开始想复杂了,一直在取模,后来发现还会循环更新,看了题解恍然大悟。码一下
实战
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
int result1 = robRange(nums, 0, nums.size() - 2); // 含头不含尾
int result2 = robRange(nums, 1, nums.size() - 1); // 含尾不含头
return max(result1, result2);
}
int robRange(vector<int>& nums, int start, int end) {
if (end == start) return nums[start];
vector<int> dp(nums.size());
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[end];
}
};
337.打家劫舍 III
题目链接:LeetCode337
文章讲解:图文讲解
题目描述
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。
除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。
提示:
树的节点数在 [1, 104] 范围内
0 <= Node.val <= 104
样例1:
输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
样例2:
输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9
思路
这题真的有点难想,居然是考虑偷父节点->孩子节点不抢,考虑孙子节点;不偷父节点->偷孩子节点,再比较大小。
实战
class Solution {
public:
unordered_map<TreeNode* , int> umap; // 记录计算过的结果
int rob(TreeNode* root) {
if (root == NULL) return 0;
if (root->left == NULL && root->right == NULL) return root->val;
if (umap[root]) return umap[root]; // 如果umap里已经有记录则直接返回
// 偷父节点
int val1 = root->val;
if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left
if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right
// 不偷父节点
int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子
umap[root] = max(val1, val2); // umap记录一下结果
return max(val1, val2);
}
};
总结
今天主要学习了dp的一系列操作,今天的题真的都很巧妙,特别是第二题和第三题,值得二刷三刷。
加油,坚持打卡的第44天。