# line plotimport matplotlib.pyplot as plt
plt.plot(x,y)
plt.show()
# Import packageimport matplotlib.pyplot as plt
# scatter plot
plt.scatter(x,y)# Put the x-axis on a logarithmic scale
plt.xscale('log')# Show plot
plt.show()
import matplotlib.pyplot as plt
# Build histogram with 5 bins
plt.hist(life_exp, bins =5)# Show and clean up plot
plt.show()
plt.clf()# Build histogram with 20 bins
plt.hist(life_exp, bins =20)# Show and clean up again
plt.show()
plt.clf()
# Basic scatter plot, log scale
plt.scatter(gdp_cap, life_exp)
plt.xscale('log')# Strings
xlab ='GDP per Capita [in USD]'
ylab ='Life Expectancy [in years]'
title ='World Development in 2007'# Add axis labels
plt.xlabel(xlab)
plt.ylabel(ylab)# Add title
plt.title(title)# After customizing, display the plot
plt.show()
# Scatter plot
plt.scatter(gdp_cap, life_exp)# Previous customizations
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')# Definition of tick_val and tick_lab
tick_val =[1000,10000,100000]
tick_lab =['1k','10k','100k']# Adapt the ticks on the x-axis
plt.xticks(tick_val, tick_lab)# After customizing, display the plot
plt.show()
# Import numpy as npimport numpy as np
# Store pop as a numpy array: np_pop
np_pop = np.array(pop)# Double np_pop
np_pop *=2# Update: set s argument to np_pop
plt.scatter(gdp_cap, life_exp, s = np_pop)# Previous customizations
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')
plt.xticks([1000,10000,100000],['1k','10k','100k'])# Display the plot
plt.show()
# Specify c and alpha inside plt.scatter()
plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop)*2, c =col, alpha =0.8)# Previous customizations
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')
plt.xticks([1000,10000,100000],['1k','10k','100k'])# Additional customizations
plt.text(1550,71,'India')
plt.text(5700,80,'China')# Add grid() call
plt.grid(True)# Show the plot
plt.show()