逆元(inv)
1.什么是逆元
当求解公式:(a/b)%m 时,因b可能会过大,会出现爆精度的情况,所以需变除法为乘法:
设c是b的逆元,则有b*c≡1(mod m);
则(a/b)%m = (a/b)1%m = (a/b)bc%m = ac(mod m);
即a/b的模等于a*b的逆元的模;
逆元就是这样应用的;
2.求逆元的方法
(1).费马小定理
在是素数的情况下,对任意整数都有。
如果无法被整除,则有。
可以在为素数的情况下求出一个数的逆元,,即为逆元。
题目中的数据范围1<=x<=10^9,p=1000000007,p是素数;
所以x肯定就无法被p整除啊,所以最后就得出x^(p-2)为x的逆元啦。
复杂度O(logn);
代码:
ll extend_gcd(ll a, ll b, ll &x, ll &y) {
if (b == 0) {
x = 1, y = 0;
return a;
}
else {
ll r = extend_gcd(b, a % b, y, x);
y -= x * (a / b);
return r;
}
}
ll inv(ll a, ll n) {
ll x, y;
extend_gcd(a, n, x, y);
x = (x % n + n) % n;
return x;
}
(3) 逆元线性筛 ( P为质数 )
求1,2,…,N关于P的逆元(P为质数)
复杂度:O(N)
代码:
const int mod = 1000000009;
const int maxn = 10005;
int inv[maxn];
inv[1] = 1;
for(int i = 2; i < 10000; i++)
inv[i] = inv[mod % i] * (mod - mod / i) % mod;
如果是求阶乘的逆元呢?(阶乘数组:fac[ ])
代码
inv[maxn]=mod_pow(fac[maxn],mod-2);
for(ll i=maxn-1;i>=0;i--)
inv[i]=(inv[i+1]*(i+1))%mod;