快速打点工具——Aopo工具

Aopo是一款由寻云安全团队开发的内网自动化快速打点工具,具备资产探测、漏洞扫描、服务扫描及弱口令爆破等功能。支持并发探测存活IP、端口服务及多种服务弱口令等。


前言

      一款内网自动化快速打点工具,有资产探测、漏洞扫描、服务扫描、弱口令爆破等功能。寻云安全团队所创。


一、项目地址

     1)https://github.com/ExpLangcn/Aopo。
在这里插入图片描述

二、解决问题

     1)Linux 报错:/lib/ld-musl-x86_64.so.1: bad ELF interpreter: 没有那个文件或目录。

curl https://forensics.cert.org/cert-forensics-tools-release-el7.rpm -o cert-forensics-tools-release-el7.rpm 
rpm -Uvh cert-forensics-tools-release*rpm
yum --enablerepo=forensics install -y musl-libc-static

三、当前功能

  • ICMP并发探测存活IP
  • 对A段只进行网关探测
  • 集成Xray POC扫描
  • 解析Xray POC V1模版
  • 并发探测主机端口服务
  • 并发探测主机服务弱口令
  • 服务弱口令探测模块 支持 SSH
  • 服务弱口令探测模块 支持 Mysql
  • 服务弱口令探测模块 支持 Mssql
  • 服务弱口令探测模块 支持 Mongodb
  • 服务弱口令探测模块 支持 Oracle
  • 服务弱口令探测模块 支持 FTP
  • 服务弱口令探测模块 支持 SMB
  • 服务弱口令探测模块 支持 Redis 未授权
  • 自定义Password字典 自动合并到程序内置

四、使用教程

     1)扫描内网全部资产(默认探测:10 A段|172 A段|192 B段)

	./Aopo -all

     2)指定网段扫描 (支持格式:192.168.1.1|192.168.1.1/24|192.168.1.1/16|192.168.1.1/8|192.168.1.1,192.168.1.2)

	./Aopo -ip 192.168.1.1/24

     3)从文件读取目标 (从文件读取目标,支持格式如上 注意:一行一个)

	./Aopo -ipf target.txt

     4)自定义密码字典 (从文件读取目标,自动去重复合并到程序内置字典中)

	./Aopo -addpass password.txt -ip xxx...
把这个c++代码给我改成py代码#include "opencv2/opencv.hpp" #include "iostream" #include "cv.h" #include "highgui.h" #include <iostream> #include <fstream> using namespace std; using namespace cv; class CDomPho { public: CDomPho() {//构造函数 m_f = m_Pxz = m_k1 = m_k2 = m_p1 = m_k2 = 0; m_X0 = m_Y0 = 0; m_cols = m_rows = 0; }; public: void POK2M(double p, double o, double k, double* r) {//旋转矩阵 double cosp = cos(p); double cosw = cos(o); double cosk = cos(k); double sinp = sin(p); double sinw = sin(o); double sink = sin(k); r[0] = cosp * cosk - sinp * sinw * sink; r[1] = -cosp * sink - sinp * sinw * cosk; r[2] = -sinp * cosw; r[3] = cosw * sink; r[4] = cosw * cosk; r[5] = -sinw; r[6] = sinp * cosk + cosp * sinw * sink; r[7] = -sinp * sink + cosp * sinw * cosk; r[8] = cosp * cosw; }; void SetPara(double aopX, double aopY, double aopZ, double aopP, double aopO, double aopK,//初始化参数 double f, double pxz, int cols, int rows, double k1, double k2, double p1, double p2, double X0, double Y0) { POK2M(aopP, aopO, aopK, m_rotM); m_aopX = aopX; m_aopY = aopY; m_aopZ = aopZ; m_aopP = aopP; m_aopO = aopO; m_aopK = aopK; m_f = f; m_Pxz = pxz; m_k1 = k1; m_k2 = k2; m_p1 = p1; m_p2 = p2; m_X0 = X0; m_Y0 = Y0; m_ref[0] = -(cols / 2) * pxz; m_ref[1] = pxz; m_ref[2] = 0; m_ref[3] = -(rows / 2) * pxz; m_ref[4] = 0; m_ref[5] = -pxz; }; //图像->地面,即扫描坐标->地面坐标; //其中*xyz为数组,储存(x1,y1,Z1...xn.yn,Zn),x,y为扫描坐标,Z为地面高 //sum为点的个数n void ImgZ2Grd(double* xyz, int sum) { double px, py; for (int i = 0; i < sum; i++) { Scan2Pho(*(xyz + i * 3 + 0), *(xyz + i * 3 + 1), &px, &py, m_ref);//扫描坐标->像平面坐标 PhoZ2Grd(px, py, *(xyz + i * 3 + 2), xyz + i * 3 + 0, xyz + i * 3 + 1, m_aopX, m_aopY, m_aopZ, m_rotM, m_f);//像平面坐标->地面 } }; //扫描坐标->像平面坐标 //ref6为仿射变换参数 void Scan2Pho(double scX, double scY, double* phoX, double* phoY, double* ref6) { *phoX = ref6[0] + ref6[1] * scX - ref6[2] * scY; *phoY = ref6[3] + ref6[4] * scX - ref6[5] * scY; // Fix Distortion矫正畸变 if (m_k1 > 1.E-12 || m_k1 < -1.E-12) { // unit is mm double x = *phoX, y = *phoY; double r2 = x * x + y * y; double r4 = r2 * r2; double dx = x * (m_k1 * r2 + m_k2 * r4) + m_p1 * (r2 + 2 * x * x) + m_p2 * 2 * x * y; double dy = y * (m_k1 * r2 + m_k2 * r4) + m_p2 * (r2 + 2 * y * y) + m_p1 * 2 * x * y; *phoX -= dx; *phoY -= dy; } }; //地面->扫描坐标 void Grd2Img(double gx, double gy, double gz, float* ix, float* iy) { double px, py; Grd2Pho_(gx, gy, gz, &px, &py, m_f, m_aopX, m_aopY, m_aopZ, m_rotM); Pho2Scan(px, py, &px, &py, m_ref); *ix = float(px); *iy = float(py); }; void Grd2Pho_(double gx, double gy, double gz, double* px, double* py, double focus, double x0, double y0, double z0, double* rotM) { double fm = -focus / (rotM[2] * (gx - x0) + rotM[5] * (gy - y0) + rotM[8] * (gz - z0)); *px = float((rotM[0] * (gx - x0) + rotM[3] * (gy - y0) + rotM[6] * (gz - z0)) * fm); *py = float((rotM[1] * (gx - x0) + rotM[4] * (gy - y0) + rotM[7] * (gz - z0)) * fm); }; void Pho2Scan(double phoX, double phoY, double* scX, double* scY, double* ref6) { // Fix Distortion if (m_k1 > 1.E-12 || m_k1 < -1.E-12) { // unit is mm double x, y, r2, r4, dx, dy, dx0, dy0; // attention: this is an approximation ,for high accuracy ,it must be iteration x = phoX; y = phoY; r2 = x * x + y * y; r4 = r2 * r2; dx0 = dx = x * (m_k1 * r2 + m_k2 * r4) + m_p1 * (r2 + 2 * x * x) + m_p2 * 2 * x * y; dy0 = dy = y * (m_k1 * r2 + m_k2 * r4) + m_p2 * (r2 + 2 * y * y) + m_p1 * 2 * x * y; x = phoX + dx; y = phoY + dy; r2 = x * x + y * y; r4 = r2 * r2; dx = x * (m_k1 * r2 + m_k2 * r4) + m_p1 * (r2 + 2 * x * x) + m_p2 * 2 * x * y; dy = y * (m_k1 * r2 + m_k2 * r4) + m_p2 * (r2 + 2 * y * y) + m_p1 * 2 * x * y; phoX += dx; phoY += dy; } double tt = ref6[1] * ref6[5] - ref6[2] * ref6[4]; phoX -= ref6[0]; phoY -= ref6[3]; *scX = (ref6[5] * phoX - ref6[2] * phoY) / tt; *scY = -(-ref6[4] * phoX + ref6[1] * phoY) / tt; }; void PhoZ2Grd(double px, double py, double gz, double* gx, double* gy, double xs, double ys, double zs, double* Rot, double focus) { double A = Rot[0] * px + Rot[1] * py - Rot[2] * focus; double B = Rot[3] * px + Rot[4] * py - Rot[5] * focus; double C = Rot[6] * px + Rot[7] * py - Rot[8] * focus; double N = (C == 0 ? 0 : (gz - zs) / C); *gx = xs + A * N; *gy = ys + B * N; }; public: double m_aopX,m_aopY,m_aopZ,m_aopP,m_aopO,m_aopK;//Xs,Ys,Zs,phi,omega,kappa外方位元素 double m_f;//相机焦距 double m_Pxz;//像素大小 double m_k1, m_k2, m_p1, m_p2;//畸变参数 double m_X0,m_Y0;//像主点 int m_rows, m_cols;//原始影像大小 double m_rotM[9]; double m_ref[6]; }; int main(int argc, char** argv) { double aopX,aopY, aopZ, aopP, aopO, aopK;//Xs,Ys,Zs,phi,omega,kappa外方位元素 double f;//相机焦距 double Pxz;//像素大小 double k1, k2, p1, p2;//畸变参数 double X0,Y0;//像主点 int rows, cols;//原始影像大小 CDomPho dompho; string s; ifstream file("para.txt"); getline(file,s); file >> aopX >> aopY >> aopZ >> aopP >> aopO >> aopK >> f >> Pxz >> k1 >> k2 >> p1 >> p2 >> X0 >> Y0;//读取参数 Mat m_img; m_img = imread("DSC_3342.JPG");//读取原始影像 rows = m_img.rows; cols = m_img.cols; double corPt[12] = { 0.0,0.0,700,cols,0 ,700,0,rows ,700,cols,rows ,700 };//存放原始影像四个角点的扫描行坐标及地面高,无DEM,使用地面均高700m dompho.SetPara(aopX, aopY, aopZ, aopP, aopO, aopK, f, Pxz, cols, rows, k1, k2, p1, p2, X0, Y0); dompho.ImgZ2Grd(corPt, 4);//投影至地面的四个点 double mingx = 9999999; double mingy = 9999999; double maxgx = 0; double maxgy = 0; double h = 700; for (int i = 0; i < 4; i++) { mingx = mingx > corPt[i * 3] ? corPt[i * 3] : mingx; mingy = mingy > corPt[i * 3 + 1] ? corPt[i * 3 + 1] : mingy; maxgx = maxgx < corPt[i * 3] ? corPt[i * 3] : maxgx; maxgy = maxgy < corPt[i * 3 + 1] ? corPt[i * 3 + 1] : maxgy; } double dx = maxgx - mingx; double dy = maxgy - mingy;//确定地面范围 int domCols = dx*2 +1; int domRows = dy*2 + 1;//分辨率=0.5m,确定正射影像大小,(*2即为/0.5,加上1是使正射影像宽高向上取整) Mat domImg(domRows, domCols, CV_8UC3, Scalar(0, 0, 0)); float ix, iy; double gx = mingx; double gy = mingy; for (int r = 1; r < domRows+1; r++) { double gx = mingx; for (int c = 0; c < domCols; c++) { dompho.Grd2Img(gx, gy, h, &ix, &iy); //最近邻差值 int i = (int)(ix + 0.5); int j = (int)(iy + 0.5); if (i < 0 || i >= cols || j <= 0 || j > rows) { domImg.at<Vec3b>(domRows-r, c)[0] = 0; } else { //!!!!opencv中图像坐标原点在左上角,而扫描坐标系坐标原点在左下角 domImg.at<Vec3b>(domRows-r, c)[0] = m_img.at<Vec3b>(rows-j, i)[0]; domImg.at<Vec3b>(domRows-r, c)[1] = m_img.at<Vec3b>(rows-j, i)[1]; domImg.at<Vec3b>(domRows-r, c)[2] = m_img.at<Vec3b>(rows-j, i)[2]; } gx += 0.5;//分辨率为0.5米 } gy += 0.5; } namedWindow("dom",0); imshow("dom", domImg); //显示图像 cvWaitKey(0); //等待按键 imwrite("domimg.jpg", domImg); }
06-26
#include “opencv2/opencv.hpp” #include “iostream” #include “cv.h” #include “highgui.h” #include #include using namespace std; using namespace cv; class CDomPho { public: CDomPho() {//构造函数 m_f = m_Pxz = m_k1 = m_k2 = m_p1 = m_k2 = 0; m_X0 = m_Y0 = 0; m_cols = m_rows = 0; }; public: void POK2M(double p, double o, double k, double* r) {//旋转矩阵 double cosp = cos(p); double cosw = cos(o); double cosk = cos(k); double sinp = sin(p); double sinw = sin(o); double sink = sin(k); r[0] = cosp * cosk - sinp * sinw * sink; r[1] = -cosp * sink - sinp * sinw * cosk; r[2] = -sinp * cosw; r[3] = cosw * sink; r[4] = cosw * cosk; r[5] = -sinw; r[6] = sinp * cosk + cosp * sinw * sink; r[7] = -sinp * sink + cosp * sinw * cosk; r[8] = cosp * cosw; }; void SetPara(double aopX, double aopY, double aopZ, double aopP, double aopO, double aopK,//初始化参数 double f, double pxz, int cols, int rows, double k1, double k2, double p1, double p2, double X0, double Y0) { POK2M(aopP, aopO, aopK, m_rotM); m_aopX = aopX; m_aopY = aopY; m_aopZ = aopZ; m_aopP = aopP; m_aopO = aopO; m_aopK = aopK; m_f = f; m_Pxz = pxz; m_k1 = k1; m_k2 = k2; m_p1 = p1; m_p2 = p2; m_X0 = X0; m_Y0 = Y0; m_ref[0] = -(cols / 2) * pxz; m_ref[1] = pxz; m_ref[2] = 0; m_ref[3] = -(rows / 2) * pxz; m_ref[4] = 0; m_ref[5] = -pxz; }; //图像->地面,即扫描坐标->地面坐标; //其中*xyz为数组,储存(x1,y1,Z1...xn.yn,Zn),x,y为扫描坐标,Z为地面高 //sum为点的个数n void ImgZ2Grd(double* xyz, int sum) { double px, py; for (int i = 0; i < sum; i++) { Scan2Pho(*(xyz + i * 3 + 0), *(xyz + i * 3 + 1), &px, &py, m_ref);//扫描坐标->像平面坐标 PhoZ2Grd(px, py, *(xyz + i * 3 + 2), xyz + i * 3 + 0, xyz + i * 3 + 1, m_aopX, m_aopY, m_aopZ, m_rotM, m_f);//像平面坐标->地面 } }; //扫描坐标->像平面坐标 //ref6为仿射变换参数 void Scan2Pho(double scX, double scY, double* phoX, double* phoY, double* ref6) { *phoX = ref6[0] + ref6[1] * scX - ref6[2] * scY; *phoY = ref6[3] + ref6[4] * scX - ref6[5] * scY; // Fix Distortion矫正畸变 if (m_k1 > 1.E-12 || m_k1 < -1.E-12) { // unit is mm double x = *phoX, y = *phoY; double r2 = x * x + y * y; double r4 = r2 * r2; double dx = x * (m_k1 * r2 + m_k2 * r4) + m_p1 * (r2 + 2 * x * x) + m_p2 * 2 * x * y; double dy = y * (m_k1 * r2 + m_k2 * r4) + m_p2 * (r2 + 2 * y * y) + m_p1 * 2 * x * y; *phoX -= dx; *phoY -= dy; } }; //地面->扫描坐标 void Grd2Img(double gx, double gy, double gz, float* ix, float* iy) { double px, py; Grd2Pho_(gx, gy, gz, &px, &py, m_f, m_aopX, m_aopY, m_aopZ, m_rotM); Pho2Scan(px, py, &px, &py, m_ref); *ix = float(px); *iy = float(py); }; void Grd2Pho_(double gx, double gy, double gz, double* px, double* py, double focus, double x0, double y0, double z0, double* rotM) { double fm = -focus / (rotM[2] * (gx - x0) + rotM[5] * (gy - y0) + rotM[8] * (gz - z0)); *px = float((rotM[0] * (gx - x0) + rotM[3] * (gy - y0) + rotM[6] * (gz - z0)) * fm); *py = float((rotM[1] * (gx - x0) + rotM[4] * (gy - y0) + rotM[7] * (gz - z0)) * fm); }; void Pho2Scan(double phoX, double phoY, double* scX, double* scY, double* ref6) { // Fix Distortion if (m_k1 > 1.E-12 || m_k1 < -1.E-12) { // unit is mm double x, y, r2, r4, dx, dy, dx0, dy0; // attention: this is an approximation ,for high accuracy ,it must be iteration x = phoX; y = phoY; r2 = x * x + y * y; r4 = r2 * r2; dx0 = dx = x * (m_k1 * r2 + m_k2 * r4) + m_p1 * (r2 + 2 * x * x) + m_p2 * 2 * x * y; dy0 = dy = y * (m_k1 * r2 + m_k2 * r4) + m_p2 * (r2 + 2 * y * y) + m_p1 * 2 * x * y; x = phoX + dx; y = phoY + dy; r2 = x * x + y * y; r4 = r2 * r2; dx = x * (m_k1 * r2 + m_k2 * r4) + m_p1 * (r2 + 2 * x * x) + m_p2 * 2 * x * y; dy = y * (m_k1 * r2 + m_k2 * r4) + m_p2 * (r2 + 2 * y * y) + m_p1 * 2 * x * y; phoX += dx; phoY += dy; } double tt = ref6[1] * ref6[5] - ref6[2] * ref6[4]; phoX -= ref6[0]; phoY -= ref6[3]; *scX = (ref6[5] * phoX - ref6[2] * phoY) / tt; *scY = -(-ref6[4] * phoX + ref6[1] * phoY) / tt; }; void PhoZ2Grd(double px, double py, double gz, double* gx, double* gy, double xs, double ys, double zs, double* Rot, double focus) { double A = Rot[0] * px + Rot[1] * py - Rot[2] * focus; double B = Rot[3] * px + Rot[4] * py - Rot[5] * focus; double C = Rot[6] * px + Rot[7] * py - Rot[8] * focus; double N = (C == 0 ? 0 : (gz - zs) / C); *gx = xs + A * N; *gy = ys + B * N; }; public: double m_aopX,m_aopY,m_aopZ,m_aopP,m_aopO,m_aopK;//Xs,Ys,Zs,phi,omega,kappa外方位元素 double m_f;//相机焦距 double m_Pxz;//像素大小 double m_k1, m_k2, m_p1, m_p2;//畸变参数 double m_X0,m_Y0;//像主点 int m_rows, m_cols;//原始影像大小 double m_rotM[9]; double m_ref[6]; }; int main(int argc, char** argv) { double aopX,aopY, aopZ, aopP, aopO, aopK;//Xs,Ys,Zs,phi,omega,kappa外方位元素 double f;//相机焦距 double Pxz;//像素大小 double k1, k2, p1, p2;//畸变参数 double X0,Y0;//像主点 int rows, cols;//原始影像大小 CDomPho dompho; string s; ifstream file(“para.txt”); getline(file,s); file >> aopX >> aopY >> aopZ >> aopP >> aopO >> aopK >> f >> Pxz >> k1 >> k2 >> p1 >> p2 >> X0 >> Y0;//读取参数 Mat m_img; m_img = imread("DSC_3342.JPG");//读取原始影像 rows = m_img.rows; cols = m_img.cols; double corPt[12] = { 0.0,0.0,700,cols,0 ,700,0,rows ,700,cols,rows ,700 };//存放原始影像四个角点的扫描行坐标及地面高,无DEM,使用地面均高700m dompho.SetPara(aopX, aopY, aopZ, aopP, aopO, aopK, f, Pxz, cols, rows, k1, k2, p1, p2, X0, Y0); dompho.ImgZ2Grd(corPt, 4);//投影至地面的四个点 double mingx = 9999999; double mingy = 9999999; double maxgx = 0; double maxgy = 0; double h = 700; for (int i = 0; i < 4; i++) { mingx = mingx > corPt[i * 3] ? corPt[i * 3] : mingx; mingy = mingy > corPt[i * 3 + 1] ? corPt[i * 3 + 1] : mingy; maxgx = maxgx < corPt[i * 3] ? corPt[i * 3] : maxgx; maxgy = maxgy < corPt[i * 3 + 1] ? corPt[i * 3 + 1] : maxgy; } double dx = maxgx - mingx; double dy = maxgy - mingy;//确定地面范围 int domCols = dx*2 +1; int domRows = dy*2 + 1;//分辨率=0.5m,确定正射影像大小,(*2即为/0.5,加上1是使正射影像宽高向上取整) Mat domImg(domRows, domCols, CV_8UC3, Scalar(0, 0, 0)); float ix, iy; double gx = mingx; double gy = mingy; for (int r = 1; r < domRows+1; r++) { double gx = mingx; for (int c = 0; c < domCols; c++) { dompho.Grd2Img(gx, gy, h, &ix, &iy); //最近邻差值 int i = (int)(ix + 0.5); int j = (int)(iy + 0.5); if (i < 0 || i >= cols || j <= 0 || j > rows) { domImg.at<Vec3b>(domRows-r, c)[0] = 0; } else { //!!!!opencv中图像坐标原点在左上角,而扫描坐标系坐标原点在左下角 domImg.at<Vec3b>(domRows-r, c)[0] = m_img.at<Vec3b>(rows-j, i)[0]; domImg.at<Vec3b>(domRows-r, c)[1] = m_img.at<Vec3b>(rows-j, i)[1]; domImg.at<Vec3b>(domRows-r, c)[2] = m_img.at<Vec3b>(rows-j, i)[2]; } gx += 0.5;//分辨率为0.5米 } gy += 0.5; } namedWindow("dom",0); imshow("dom", domImg); //显示图像 cvWaitKey(0); //等待按键 imwrite("domimg.jpg", domImg); } 帮我转成py代码
最新发布
07-23
import cv2 import numpy as np import math # 类定义:CDomPho(与之前一致) class CDomPho: def __init__(self): self.m_f = self.m_Pxz = self.m_k1 = self.m_k2 = self.m_p1 = self.m_p2 = 0.0 self.m_X0 = self.m_Y0 = 0.0 self.m_cols = self.m_rows = 0 self.m_aopX = self.m_aopY = self.m_aopZ = self.m_aopP = self.m_aopO = self.m_aopK = 0.0 self.m_rotM = np.zeros(9) self.m_ref = np.zeros(6) def POK2M(self, p, o, k, r): cosp = math.cos(p) cosw = math.cos(o) cosk = math.cos(k) sinp = math.sin(p) sinw = math.sin(o) sink = math.sin(k) r[0] = cosp * cosk - sinp * sinw * sink r[1] = -cosp * sink - sinp * sinw * cosk r[2] = -sinp * cosw r[3] = cosw * sink r[4] = cosw * cosk r[5] = -sinw r[6] = sinp * cosk + cosp * sinw * sink r[7] = -sinp * sink + cosp * sinw * cosk r[8] = cosp * cosw def SetPara(self, aopX, aopY, aopZ, aopP, aopO, aopK, f, pxz, cols, rows, k1, k2, p1, p2, X0, Y0): self.m_rotM = np.zeros(9) self.POK2M(aopP, aopO, aopK, self.m_rotM) self.m_aopX, self.m_aopY, self.m_aopZ = aopX, aopY, aopZ self.m_aopP, self.m_aopO, self.m_aopK = aopP, aopO, aopK self.m_f, self.m_Pxz = f, pxz self.m_k1, self.m_k2, self.m_p1, self.m_p2 = k1, k2, p1, p2 self.m_X0, self.m_Y0 = X0, Y0 self.m_cols, self.m_rows = cols, rows self.m_ref[0] = -(cols / 2) * pxz self.m_ref[1] = pxz self.m_ref[2] = 0 self.m_ref[3] = -(rows / 2) * pxz self.m_ref[4] = 0 self.m_ref[5] = -pxz def Scan2Pho(self, scX, scY): phoX = self.m_ref[0] + self.m_ref[1] * scX - self.m_ref[2] * scY phoY = self.m_ref[3] + self.m_ref[4] * scX - self.m_ref[5] * scY if abs(self.m_k1) > 1e-12: x, y = phoX, phoY r2 = x * x + y * y r4 = r2 * r2 dx = x * (self.m_k1 * r2 + self.m_k2 * r4) + self.m_p1 * (r2 + 2 * x * x) + 2 * self.m_p2 * x * y dy = y * (self.m_k1 * r2 + self.m_k2 * r4) + self.m_p2 * (r2 + 2 * y * y) + 2 * self.m_p1 * x * y phoX -= dx phoY -= dy return phoX, phoY def Pho2Scan(self, phoX, phoY): if abs(self.m_k1) > 1e-12: x, y = phoX, phoY r2 = x * x + y * y r4 = r2 * r2 dx0 = x * (self.m_k1 * r2 + self.m_k2 * r4) + self.m_p1 * (r2 + 2 * x * x) + 2 * self.m_p2 * x * y dy0 = y * (self.m_k1 * r2 + self.m_k2 * r4) + self.m_p2 * (r2 + 2 * y * y) + 2 * self.m_p1 * x * y x = phoX + dx0 y = phoY + dy0 r2 = x * x + y * y r4 = r2 * r2 dx = x * (self.m_k1 * r2 + self.m_k2 * r4) + self.m_p1 * (r2 + 2 * x * x) + 2 * self.m_p2 * x * y dy = y * (self.m_k1 * r2 + self.m_k2 * r4) + self.m_p2 * (r2 + 2 * y * y) + 2 * self.m_p1 * x * y phoX += dx phoY += dy phoX -= self.m_ref[0] phoY -= self.m_ref[3] tt = self.m_ref[1] * self.m_ref[5] - self.m_ref[2] * self.m_ref[4] scX = (self.m_ref[5] * phoX - self.m_ref[2] * phoY) / tt scY = -(-self.m_ref[4] * phoX + self.m_ref[1] * phoY) / tt return scX, scY def PhoZ2Grd(self, px, py, gz): A = self.m_rotM[0] * px + self.m_rotM[1] * py - self.m_rotM[2] * self.m_f B = self.m_rotM[3] * px + self.m_rotM[4] * py - self.m_rotM[5] * self.m_f C = self.m_rotM[6] * px + self.m_rotM[7] * py - self.m_rotM[8] * self.m_f if abs(C) > 1e-12: N = (gz - self.m_aopZ) / C else: N = 0.0 gx = self.m_aopX + A * N gy = self.m_aopY + B * N return gx, gy def Grd2Pho_(self, gx, gy, gz): dx = gx - self.m_aopX dy = gy - self.m_aopY dz = gz - self.m_aopZ denom = self.m_rotM[2] * dx + self.m_rotM[5] * dy + self.m_rotM[8] * dz fm = -self.m_f / denom if abs(denom) > 1e-12 else 0 px = (self.m_rotM[0] * dx + self.m_rotM[3] * dy + self.m_rotM[6] * dz) * fm py = (self.m_rotM[1] * dx + self.m_rotM[4] * dy + self.m_rotM[7] * dz) * fm return px, py def ImgZ2Grd(self, xyz): results = [] for i in range(0, len(xyz), 3): scX, scY, Z = xyz[i], xyz[i + 1], xyz[i + 2] phoX, phoY = self.Scan2Pho(scX, scY) gx, gy = self.PhoZ2Grd(phoX, phoY, Z) results.extend([gx, gy, Z]) return results def Grd2Img(self, gx, gy, gz): px, py = self.Grd2Pho_(gx, gy, gz) scX, scY = self.Pho2Scan(px, py) return scX, scY # 鼠标交互相关全局变量 scale = 1.0 angle = 0.0 offset_x = 0 offset_y = 0 last_mouse_pos = (0, 0) dragging = False def mouse_callback(event, x, y, flags, param): global scale, angle, offset_x, offset_y, dragging, last_mouse_pos if event == cv2.EVENT_MBUTTONDOWN: dragging = True last_mouse_pos = (x, y) elif event == cv2.EVENT_MOUSEMOVE and dragging: dx = x - last_mouse_pos[0] dy = y - last_mouse_pos[1] offset_x += dx offset_y += dy last_mouse_pos = (x, y) update_display() elif event == cv2.EVENT_MBUTTONUP: dragging = False elif event == cv2.EVENT_MOUSEWHEEL: if flags > 0: scale *= 1.1 else: scale /= 1.1 update_display() elif event == cv2.EVENT_RBUTTONDOWN: angle += 10 if angle >= 360: angle -= 360 update_display() def update_display(): """根据当前参数更新显示图像""" global domImg, scale, angle, offset_x, offset_y center = (domImg.shape[1] // 2, domImg.shape[0] // 2) M_scale = cv2.getRotationMatrix2D(center, 0, scale) M_rot = cv2.getRotationMatrix2D(center, angle, 1) M_translate = np.float32([[1, 0, offset_x], [0, 1, offset_y]]) M = M_translate @ M_rot @ M_scale transformed_img = cv2.warpAffine(domImg, M, (domImg.shape[1], domImg.shape[0])) cv2.imshow('Orthophoto', transformed_img) if __name__ == "__main__": try: with open(r'D:\shuiwei\para.txt') as file: file.readline() # 跳过第一行 params = list(map(float, file.readline().split())) except Exception as e: print(f"读取参数文件时出错: {e}") exit(1) aopX, aopY, aopZ, aopP, aopO, aopK = params[0:6] f, Pxz, k1, k2, p1, p2, X0, Y0 = params[6:14] m_img = cv2.imread(r'D:\shuiwei\1.jpg') if m_img is None: raise FileNotFoundError("无法读取图像文件 ") rows, cols = m_img.shape[:2] dompho = CDomPho() dompho.SetPara(aopX, aopY, aopZ, aopP, aopO, aopK, f, Pxz, cols, rows, k1, k2, p1, p2, X0, Y0) corPt = [0.0, 0.0, 64.3, cols, 0, 64.3, 0, rows, 64.3, cols, rows, 64.3] grd_coords = dompho.ImgZ2Grd(corPt) gxs = grd_coords[0::3] gys = grd_coords[1::3] mingx, maxgx = min(gxs), max(gxs) mingy, maxgy = min(gys), max(gys) dx = maxgx - mingx dy = maxgy - mingy resolution = 0.5 domCols = int(dx / resolution) + 1 domRows = int(dy / resolution) + 1 domImg = np.zeros((domRows, domCols, 3), dtype=np.uint8) h = 64.3 gy = mingy total_pixels = domRows * domCols processed = 0 for r in range(domRows): gx = mingx for c in range(domCols): ix, iy = dompho.Grd2Img(gx, gy, h) i = int(ix + 0.5) j = int(iy + 0.5) if 0 <= i < cols and 0 <= j < rows: domImg[r, c] = m_img[rows - 1 - j, i] gx += resolution processed += 1 if processed % 10000 == 0: percent = processed / total_pixels * 100 print(f"处理进度: {percent:.2f}%") gy += resolution cv2.namedWindow('Orthophoto', cv2.WINDOW_NORMAL) cv2.setMouseCallback('Orthophoto', mouse_callback) update_display() print("按 ESC 键退出程序") while True: key = cv2.waitKey(1) if key == 27: break cv2.destroyAllWindows() Traceback (most recent call last): File "D:\水位检测\正射校正\基于控制点的单应性变换.py", line 249, in <module> update_display() File "D:\水位检测\正射校正\基于控制点的单应性变换.py", line 178, in update_display M = M_translate @ M_rot @ M_scale ~~~~~~~~~~~~^~~~~~~ ValueError: matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 3)输出修改后的完整代码
06-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值