// CUDA runtime 库 + CUBLAS 库
#include "cuda_runtime.h"
#include "cublas_v2.h"
#include <iostream>
#include <stdlib.h>
using namespace std;
// 定义测试矩阵的维度
int const A_ROW = 3;
int const A_COL = 2;
int const B_ROW = 2;
int const B_COL = 3;
int main()
{
// 定义状态变量
cublasStatus_t status;
float *h_A, *h_B, *h_C; //存储于内存中的矩阵
h_A = (float*)malloc(sizeof(float)*A_ROW*A_COL); //在内存中开辟空间
h_B = (float*)malloc(sizeof(float)*B_ROW*B_COL);
h_C = (float*)malloc(sizeof(float)*A_ROW*B_COL);
// 为待运算矩阵的元素赋予 0-10 范围内的随机数
for (int i = 0; i < A_ROW*A_COL; i++) {
h_A[i] = i+1;
}
for (int i = 0; i < B_ROW*B_COL; i++) {
h_B[i] =i+1;
}
//打印待测试的矩阵
cout << "矩阵 A :" << endl;
for (int i = 0; i < A_ROW*A_COL; i++) {
cout << h_A[i] << " ";
if ((i + 1) % A_COL == 0) cout << endl;
}
cout << endl;
cout << "矩阵 B :" << endl;
for (int i = 0; i < B_ROW*B_COL; i++) {
cout << h_B[i] << " ";
if ((i + 1) % B_COL == 0) cout << endl;
}
cout << endl;
float *d_A, *d_B, *d_C; //存储于显存中的矩阵
cudaMalloc((void**)&d_A, sizeof(float)*A_ROW*A_COL); //在显存中开辟空间
cudaMalloc((void**)&d_B, sizeof(float)*B_ROW*B_COL);
cudaMalloc((void**)&d_C, sizeof(float)*A_ROW*B_COL);
cublasHandle_t handle;
cublasCreate(&handle);
cudaMemcpy(d_A, h_A, sizeof(float)*A_ROW*A_COL, cudaMemcpyHostToDevice); //数据从内存拷贝到显存
cudaMemcpy(d_B, h_B, sizeof(float)*B_ROW*B_COL, cudaMemcpyHostToDevice);
float a = 1, b = 0;
cublasSgemm(
handle,
CUBLAS_OP_N, //矩阵A的属性参数,不转置,按列优先
CUBLAS_OP_N, //矩阵B的属性参数,不转置,按列优先
B_COL, //矩阵B^T、C^T的行数
A_ROW, //矩阵A^T、C^T的列数
B_ROW, //B^T的列数,A^T的行数,此处也可为A_COL,一样的
&a, //alpha的值
d_B, //左矩阵,为B^T
B_COL, //B^T的leading dimension,按列优先,则leading dimension为B^T的行数(B的列数)
d_A, //右矩阵,为A^T
A_COL, //A^T的leading dimension,按列优先,则leading dimension为A^T的行数(A的列数)
&b, //beta的值
d_C, //结果矩阵C
B_COL //C^T的leading dimension,C^T矩阵一定按列优先,则leading dimension为C^T的行数(C的列数)
);
//此时得到的结果便是C=AB,但由于C是按列优先,故此时得到的C应该是正确结果的转置
std::cout << "计算结果:" << std::endl;
cudaMemcpy(h_C, d_C, sizeof(float)*A_ROW*B_COL, cudaMemcpyDeviceToHost);
for (int i = 0; i < A_ROW*B_COL; ++i) {
std::cout << h_C[i] << " ";
if ((i + 1) % B_COL == 0) std::cout << std::endl;
}
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
free(h_A);
free(h_B);
free(h_C);
return 0;
}
转载于
[添加链接描述](https://blog.csdn.net/u011197534/article/details/78378536)
cuda矩阵乘法API
最新推荐文章于 2024-07-29 10:38:54 发布