需求
cifar10中有十个类别的图像,我需要其中的第一类和第二类作为数据集,重新构建训练集和测试集,用这份小数据集来训练一个diffusion model
get data
import os
import pickle
import numpy as np
from PIL import Image
# 替换为你的 CIFAR-10 pickle 文件路径
pickle_file_path = "train_batch_class12.pickle"
# 读取 CIFAR-10 pickle 文件内容
with open(pickle_file_path, "rb") as f:
cifar10_data = pickle.load(f)
# 提取图像数据和标签
image_data = cifar10_data['data']
labels = cifar10_data['labels']
# 类别名称的映射字典
class_names = {
0: "airplane",
1: "automobile",
# 添加其他类别的映射
}
# 循环处理每个图像
for i in range(len(image_data)):
# 获取单个图像和对应标签
img_array = image_data[i]
label = labels[i]
# 调整图像数据形状和数据类型
img_array = img_array.reshape((3, 32, 32)).transpose((1, 2, 0)) # 调整形状和通道顺序
img_array = img_array.astype(np.uint8)
# 将 NumPy 数组转换为 PIL Image
image = Image.fromarray(img_array)
# 获取类别名称
class_name = class_names.get(label, f"class{
label}")
# 创建存储文件夹的路径
class_folder_path = f"train/{
class_name}"
os.makedirs(class_folder_path, exist_ok=True)
# 保存图像到对应的类别文件夹
image.save(os.path.join(class_folder_path, f"cifar10_image_{
i}_label_{
label}.png"))
# 如果需要显示图像,取消注释下面这行
# image.show()
import os
import pickle
import numpy as np
from PIL import Image
# 替换为你的 CIFAR-10 pickle 文件路径
pickle_file_path = "test_batch_class12.pickle"
# 读取 CIFAR-10 pickle 文件内容
with open(pickle_file_path, "rb") as f:
cifar10_data = pickle.load(f)
# 提取图像数据和标签
image_data = cifar10_data['data']
labels