从数学角度来研究过河问题
一、问题描述
在漆黑的夜里,甲乙丙丁共四位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥的。不幸的是,四个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。如果各自单独过桥的话,四人所需要的时间分别是1、2、5、8分钟;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题:如何设计一个方案,让这四人尽快过桥。
二、问题答案
两人过桥后,需要把手电筒送回,最容易想到的是让最快的人担任来回送电筒。因此,第一种办法:先让甲乙过去(2分钟),甲回来(1分钟),甲丙过去(5分钟),甲回来(1分钟),甲丁再过去(8分钟),总共需要17分钟就可以让四个人都过去。
而正确答案是第二种办法:先让甲乙过去(2分钟),甲回来(1分钟),丙丁过去(8分钟),乙回来(2分钟),甲乙再过去(2分钟),总共需要15分钟就可以让四个人都过去。这种方法的关键点,让两个最慢的人同时过桥。
三、扩展
把四人所需要的时间,改变一下分别,是1、4、5、8分钟。
第一种方法:先甲乙过去(4分钟),甲回来(1分钟),甲丙过去(5分钟),甲回来(1分钟),甲丁再过去(8分钟),总共需要19分钟就可以让四个人都过去。
第二种方法:先让甲乙过去(4分钟),甲回来(1分钟),丙丁过去(8分钟),乙回来(4分钟),甲乙再过去(4分钟),总共需要21分钟就可以让四个人都过去。
这一次,两个最慢的人一起过去反而更慢了。
这两次方案的差异:次快的人要不要也传递一次手电筒。
假定四个人过河时间是T1,T2,T3,T4且T1<T2<T3<T4,如何选择过桥方案。
第一种过河方法的总时间为:T2+T1+T3+T1+T4
第二种过河方法的总时间为:T2+T1+T4+T2+T2
二者之差为:(T1+T3)-2T2。
结论:如果(T1+T3)大于2T2,第二种方法优;如果(T1+T3)小于2T2,第一种方法优;如果(T1+T3)等于2T2,两种方法无差异。
四、问题推广<