作业12-着色问题

本文介绍了如何使用回溯法解决图的m着色问题,即给定无向连通图和m种颜色,要求每条边的两个顶点颜色不同。详细解析了回溯法的基本思想,包括深度优先搜索策略、回溯过程以及解题步骤。并讨论了回溯法的效率,时间复杂度为O(nmn)。提供了源代码链接供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

图的m着色问题。给定无向连通图G和m种颜色,用这些颜色给图的顶点着色,每个顶点一种颜色。如果要求G的每条边的两个顶点着不同颜色。给出所有可能的着色方案;如果不存在,则回答“NO”。

解析

回溯法介绍及其基本思想

在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

考虑所有的图,讨论在至多使用m种颜色的情况下,可对一给定的图着色的所有不同方法。通过回溯的方法,不断的为每一个节点着色,在前面n-1个节点都合法的着色之后,开始对第n个节点进行着色,这时候枚举可用的m个颜色,通过和第n个节点相邻的节点的颜色,来判断这个颜色是否合法,如果找到那么一种颜色使得第n个节点能够着色,那么说明m种颜色的方案是可行的。

设计

回溯法解题步骤

在用回溯法搜索解空间树时,通常采用两种策略来避免无效搜索,提高回溯法的搜索效率。其一是用约束函数在扩展结点处剪去不满足约束的子树;其二是用限界函数剪去不能得到最优解得子树。这两类函数统称剪枝函数。

运用回溯法解题通常包含以下三

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值