conda常用命令汇总

本文详细介绍了conda的常用命令,包括查看conda版本、更新conda及包、创建和管理虚拟环境、切换和退出环境、列出所有环境、克隆环境、删除环境、安装和卸载包等操作。这些命令对于日常的数据科学和开发工作至关重要,帮助保持项目依赖的整洁和隔离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. conda --version #查看conda版本,验证是否安装

2. conda update conda #更新至最新版本,也会更新其它相关包

3. conda update --all #更新所有包

4. conda update package_name #更新指定的包

5. conda create -n env_name package_name #创建名为env_name的新环境,并在该环境下安装名为package_name 的包,可以指定新环境的版本号,例如:conda create -n python2 python=python2.7 numpy pandas,创建了python2环境,python版本为2.7,同时还安装了numpy pandas包

6. source activate env_name #切换至env_name环境

7. source deactivate #退出环境

8. conda info -e #显示所有已经创建的环境

9. conda create --name new_env_name --clone old_env_name #复制old_env_name为new_env_name

10. conda remove --name env_name –all #删除环境

11. conda list #查看所有已经安装的包

12. conda install package_name #在当前环境中安装包

13. conda install --name env_name package_name #在指定环境中安装包

14. conda remove -- name env_name package #删除指定环境中的包

15. conda remove package #删除当前环境中的包

16. conda create -n tensorflow_env tensorflow

conda activate tensorflow_env #conda 安装tensorflow的CPU版本

17. conda create -n tensorflow_gpuenv tensorflow-gpu

conda activate tensorflow_gpuenv #conda安装tensorflow的GPU版本

18. conda env remove -n env_name #采用第10条的方法删除环境失败时,可采用这种方法

19. 给pycharm配置codna env setting-interpreter-設置-add

20. conda config --remove-key channels

21. pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值