D - Round Numbers(数位dp)

在一片遥远的牧场,牛群发明了一种基于二进制的决策游戏,以解决日常争端。游戏规则简单,但背后的数学逻辑复杂。两头牛各自选择一个小于两亿的整数,若两个数在二进制表示下零的数量多于一,则先选的牛胜。此挑战在于快速判断特定范围内满足条件的“圆数”数量,即二进制中零多于一的数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first. They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,
otherwise the second cow wins.

A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively Start and Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive rangeStart.. Finish

Sample Input

2 12

Sample Output

6

题目大意:找出区间内数字转化为二进制后符合0的个数比1的个数多的数字的个数

思路概括:数位dp 开一个三维dp数组 dp[pos][num0][num1] 表示的是在第pos位0的个数和1的个数

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define lt k<<1
#define rt k<<1|1
#define lowbit(x) x&(-x)
#define lson l,mid,lt
#define rson mid+1,r,rt
using namespace std;
typedef long long ll;
typedef long double ld;
#define ios ios::sync_with_stdio(false);cin.tie(nullptr);
#define mem(a, b) memset(a, b, sizeof(a))
//#define int ll
const double pi = acos(-1.0);
const double eps = 1e-6;
const ll mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int maxn = 1e5 + 50;
int dp[35][35][35];
int a[35];
int dfs(int pos, int num0, int num1, int limit2, int limit)
{
    if(pos == -1)
    {
        if(num0 >= num1) return 1;
        else return 0;
    }

    if(!limit && !limit2 && dp[pos][num0][num1] != -1) return dp[pos][num0][num1];
    int sum = 0;
    int up;
    if(limit) up = a[pos];
    else up = 1;
    for(int i=0;i<=up;i++)
    {
        if(i && limit2) sum += dfs(pos - 1, 0, 1, limit2 && i==0, limit && i == a[pos]);
        if(i && !limit2) sum += dfs(pos - 1, num0, num1 + 1, limit2 && i==0, limit && i == a[pos]);
        if(!i && limit2) sum += dfs(pos - 1, 0, 0, limit2 && i == 0, limit && i == a[pos]);
        if(!i && !limit2) sum += dfs(pos - 1, num0 + 1, num1, limit2 && i ==0, limit && i == a[pos]);
    }
    if(!limit && !limit2) return dp[pos][num0][num1] = sum;
    return sum;
}
int solve(int x)
{
    int len = 0;
    while(x)
    {
        a[len++] = x & 1;
        x >>= 1;
    }
    return dfs(len - 1, 0, 0, 1, 1);
}
int main()
{
    int s, e;
    mem(dp, -1);
    while(cin >> s >> e)
    {
        cout << solve(e) - solve(s - 1) << endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值