import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
例
f = lambda x : (x - 3)**2 + 2.5*x -7.5
求解导数令导数=0求解最小值
2*(x - 3)*1 + 2.5 = 0
2*x - 3.5 = 0
x = 1.75
x = np.linspace(-2,5,100)
y = f(x)
plt.plot(x,y)

梯度下降求解最小值
d = lambda x : 2*(x - 3) + 2.5
learning_rate = 0.1
min_value = np.random.randint(-3,5,size = 1)[0]
print('---------------------',min_value)
min_value_last = min_value + 0.1
tol = 0.0001
count = 0
while True:
if np.abs(min_value - min_value_last) < tol:
break
min_value_last = min_value
min_value = min_value - learning_rate*d(min_value)
count +=1
print('+++++++++++++++++++++%d'%(count),min_value)
print('*********************',min_value)
--------------------- 2
+++++++++++++++++++++1 1.95
+++++