学习cv2.CascadeClassifier()函数
CascadeClassifier,是Opencv中做人脸检测的时候的一个级联分类器。并且既可以使用Haar,也可以使用LBP特征。
Haar特征是一种反映图像的灰度变化的,像素分模块求差值的一种特征。它分为三类:边缘特征、线性特征、中心特征和对角线特征。用黑白两种矩形框组合成特征模板,在特征模板内用 黑色矩形像素和 减去 白色矩形像素和来表示这个模版的特征值。例如:脸部的一些特征能由矩形模块差值特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述在特定方向(水平、垂直、对角)上有明显像素模块梯度变化的图像结构。这样就可以进行区分人脸。
LBP
子函数detectMultiScale()介绍
void detectMultiScale(
const Mat& image, //待检测图像
CV_OUT vector & objects, //被检测物体的矩形框向量
double scaleFactor = 1.1, //前后两次相继的扫描中搜索窗口的比例系数,默认为1.1 即每次搜索窗口扩大10%
int minNeighbors = 3, //构成检测目标的相邻矩形的最小个数 如果组成检测目标的小矩形的个数和小于minneighbors - 1 都会被排除
//如果minneighbors为0 则函数不做任何操作就返回所有被检候选矩形框
int flags = 0, //若设置为CV_HAAR_DO_CANNY_PRUNING 函数将会使用Canny边缘检测来排除边缘过多或过少的区域
Size minSize = Size(),
Size maxSize = Size() //最后两个参数用来限制得到的目标区域的范围
);
对于flags,有以下取值:
CV_HAAR_DO_CANNY_PRUNING:利用Canny边缘检测器来排除一些边缘很少或者很多的图像区域;
CV_HAAR_SCALE_IMAGE:按比例正常检测;
CV_HAAR_FIND_BIGGEST_OBJECT:只检测最大的物体;
CV_HAAR_DO_ROUGH_SEARCH:只做初略检测。
youkuaiyun.com/LLY_A_/article/details/114398030
2.人脸检测器
Opencv自带训练好的人脸检测模型,存储在sources/data/haarcascades文件夹和sources/data/lbpcascades文件夹下。其中几个.xml文件如下:
人脸检测器(默认):haarcascade_frontalface_default.xml
人脸检测器(快速Harr):haarcascade_frontalface_alt2.xml
人脸检测器(侧视):haarcascade_profileface.xml
眼部检测器(左眼):haarcascade_lefteye_2splits.xml
眼部检测器(右眼):haarcascade_righteye_2splits.xml
嘴部检测器:haarcascade_mcs_mouth.xml
鼻子检测器:haarcascade_mcs_nose.xml
身体检测器:haarcascade_fullbody.xml
人脸检测器(快速LBP):lbpcascade_frontalface.xml
dn.net/akenseren/article/details/80658867