【PAT (Advanced Level) Practice】刷题1002 A+B for Polynomials

本文介绍了一种解决多项式加法问题的算法实现,输入两个多项式的非零项系数和指数,输出它们的和。算法使用哈希表存储每个多项式的项,并进行逐项相加,最后按降序输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A+B for Polynomials

This time, you are supposed to find A+B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:

K N​1​​ a​N​1​​​​ N​2​​ a​N​2​​​​ … N​K​​ a​N​K​​​​

where K is the number of nonzero terms in the polynomial, N​i​​ and a​N​i​​​​ (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10,0≤N​K​​<⋯<N​2​​<N​1​​≤1000.

Output Specification:

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
	float hash[1001];
	int num = 0, num1, num2;
	int i, e;
	float c;
	for (i = 0;i < 1001;i++) {
		hash[i] = 0;
	}
	cin >> num1;
	for (i = 0;i < num1;i++)
	{
		cin >> e >> c;
		hash[e] = hash[e] + c;
	}
	cin >> num2;
	for (i = 0;i < num2;i++)
	{
		cin >> e >> c;
		hash[e] = hash[e] + c;
	}
	for (i = 0;i < 1001;i++)
	{
		if (hash[i] != 0)
		{
			num++;
		}
	}
	if (num == 0)
	{
		cout << num<<endl;
		return 0;
	}
	cout << num << " ";
	for (i = 1000;i >= 0;i--)
	{
		if (hash[i] != 0)
		{
			if (num == 1)
			{
				cout << i << " ";
				printf("%.1f", hash[i]);
				break;
			}
			else
			{
				cout << i << " " ;
				printf("%.1f ", hash[i]);
				num--;
			}
		}
	}
	cout << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值