pygame.draw.polygon()参数的顺序问题

博客介绍了使用pygame.draw.polygon()函数绘制六边形的代码。代码从作者代码中段粘贴而来,缺少部分宏定义,参数中六个点为六边形顶点顺时针排列。作者起初未注意参数顺序,调整后成功画出完美的黄色六边形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面这两行代码是使用pygame.draw.polygon()函数画出的六边形:

list=[(CEN-SIDE/2,CEN-RA/2),(CEN+SIDE/2,CEN-RA/2),(CEN+SIDE,CEN),(CEN+SIDE/2,CEN+RA/2),(CEN-SIDE/2,CEN+RA/2),(CEN-SIDE,CEN)]
pygame.draw.polygon(screen,COLOR,list,0)

代码直接从我的代码中段粘贴过来,缺少部分宏定义,但参数中六个点是六边形顶点的顺时针排列。
最开始使用时没有注意参数的顺序问题,画出来一个很奇怪的东西,重新调整顺序后就很完美了,如中间的黄色六边形。
在这里插入图片描述

针对以上问题,修正代码#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 人形机器人仿真演示 - 修复OpenGL初始化问题 """ import sys import os import time import json import numpy as np import matplotlib.pyplot as plt from typing import Dict, List, Tuple, Optional import threading import argparse import mujoco import pygame from pygame.locals import * import math import cv2 from PIL import Image import io import traceback import subprocess import ctypes # 检查OpenGL支持并尝试修复 def fix_opengl_issues(): """尝试解决OpenGL初始化问题""" print("🛠️ 尝试解决OpenGL初始化问题...") # 尝试设置不同的渲染后端 backends = ['glfw', 'osmesa', 'egl'] for backend in backends: try: os.environ['MUJOCO_GL'] = backend print(f" 尝试使用 {backend} 渲染后端...") # 测试OpenGL加载 test_model = mujoco.MjModel.from_xml_string('<mujoco/>') test_data = mujoco.MjData(test_model) mujoco.mj_forward(test_model, test_data) print(f"✅ 使用 {backend} 后端成功!") return True except Exception as e: print(f"⚠️ {backend} 后端失败: {e}") # 尝试加载OpenGL库 try: print(" 尝试直接加载OpenGL库...") opengl_libs = [ 'libGL.so.1', # Linux '/usr/lib/x86_64-linux-gnu/libGL.so.1', # Ubuntu 'opengl32.dll', # Windows '/System/Library/Frameworks/OpenGL.framework/OpenGL' # macOS ] for lib in opengl_libs: try: ctypes.CDLL(lib) print(f"✅ 成功加载 {lib}") return True except Exception as e: print(f"⚠️ 加载 {lib} 失败: {e}") except Exception as e: print(f"⚠️ OpenGL库加载失败: {e}") return False # 导入自定义模块 try: from mujoco_simulation import HumanoidRobot from advanced_control import ( IntelligentDecisionSystem, PathPlanner, EnergyOptimizer, AdaptiveController, EnvironmentState, RobotState, TaskType, TerrainType ) except ImportError: # 创建模拟类以避免导入错误 class HumanoidRobot: def __init__(self): self.model = None self.data = None self.position = np.array([0.0, 0.0, 1.0]) self.velocity = np.zeros(3) self.orientation = np.array([1.0, 0.0, 0.0, 0.0]) class IntelligentDecisionSystem: pass class VisualizationSystem: """可视化系统 - 用于2D和3D渲染""" def __init__(self, model: Optional[mujoco.MjModel] = None, width: int = 1200, height: int = 800): """初始化可视化系统""" pygame.init() self.screen = pygame.display.set_mode((width, height)) pygame.display.set_caption("人形机器人仿真演示") self.clock = pygame.time.Clock() self.font = pygame.font.SysFont('SimHei', 20) self.title_font = pygame.font.SysFont('SimHei', 28, bold=True) self.terrain_colors = { 'flat': (180, 200, 180), 'slope': (160, 180, 200), 'stairs': (200, 180, 160), 'sand': (220, 200, 150), 'grass': (150, 200, 150) } self.obstacle_colors = { 'static': (200, 100, 100), 'dynamic': (100, 150, 200), 'moving': (150, 100, 200) } self.robot_img = self._create_robot_image() # 尝试修复OpenGL问题 self.opengl_fixed = fix_opengl_issues() # 初始化MuJoCo渲染组件 self.camera = mujoco.MjvCamera() self.opt = mujoco.MjvOption() self.scene = None self.context = None if model is not None and self.opengl_fixed: try: # 尝试创建渲染上下文 self.context = mujoco.MjrContext(model, mujoco.mjtFontScale.mjFONTSCALE_150) self.scene = mujoco.MjvScene(model=model, maxgeom=1000) print("✅ 成功初始化渲染上下文") # 设置相机位置 self.camera.distance = 5.0 self.camera.elevation = -20 self.camera.azimuth = 90 except Exception as e: print(f"⚠️ 渲染上下文初始化失败: {e}") self.scene = None self.context = None else: print("⚠️ 无法修复OpenGL问题,禁用3D渲染") def _create_robot_image(self): """创建机器人图像""" surface = pygame.Surface((50, 80), pygame.SRCALPHA) # 绘制头部 pygame.draw.circle(surface, (100, 150, 255), (25, 15), 10) # 绘制身体 pygame.draw.rect(surface, (100, 200, 100), (15, 25, 20, 30)) # 绘制腿部 pygame.draw.line(surface, (0, 0, 0), (20, 55), (15, 75), 3) pygame.draw.line(surface, (0, 0, 0), (30, 55), (35, 75), 3) # 绘制手臂 pygame.draw.line(surface, (0, 0, 0), (15, 35), (5, 50), 3) pygame.draw.line(surface, (0, 0, 0), (35, 35), (45, 50), 3) return surface def render_2d(self, demo, current_time: float): """渲染2D可视化界面""" self.screen.fill((240, 240, 245)) # 获取当前场景状态 scenario_state = demo.get_current_scenario_state(current_time) # 绘制标题 title = self.title_font.render("人形机器人仿真演示系统", True, (30, 30, 100)) self.screen.blit(title, (20, 15)) # 绘制状态面板 self._render_status_panel(demo, scenario_state, current_time) # 绘制场景可视化 self._render_scenario_visualization(demo, scenario_state, current_time) # 绘制3D渲染窗口 self._render_3d_view(demo) # 绘制性能图表 self._render_performance_charts(demo) # 绘制控制说明 self._render_instructions() pygame.display.flip() def _render_status_panel(self, demo, scenario_state: Dict, current_time: float): """渲染状态面板""" # 状态面板背景 pygame.draw.rect(self.screen, (250, 250, 255), (20, 70, 450, 180), 0, 10) pygame.draw.rect(self.screen, (200, 200, 220), (20, 70, 450, 180), 2, 10) # 场景信息 scene_text = self.font.render(f"场景: {scenario_state['description']}", True, (30, 30, 30)) self.screen.blit(scene_text, (40, 90)) # 地形信息 terrain_text = self.font.render(f"地形: {scenario_state['terrain']}", True, (30, 30, 30)) self.screen.blit(terrain_text, (40, 120)) # 时间信息 time_text = self.font.render(f"时间: {current_time:.1f}s / {demo.demo_config['duration']:.1f}s", True, (30, 30, 30)) self.screen.blit(time_text, (40, 150)) # 能量消耗 energy_text = self.font.render( f"能量消耗: {demo.energy_consumption[-1] if demo.energy_consumption else 0:.2f} J", True, (30, 30, 30)) self.screen.blit(energy_text, (40, 180)) # 控制模式 mode_text = self.font.render(f"控制模式: {'AI控制' if demo.demo_config['enable_ai'] else '手动控制'}", True, (30, 30, 30)) self.screen.blit(mode_text, (40, 210)) # 渲染状态 render_status = "可用" if self.scene and self.context else "不可用" render_text = self.font.render(f"3D渲染: {render_status}", True, (30, 30, 30)) self.screen.blit(render_text, (250, 180)) # 状态指示器 status_color = (100, 200, 100) if demo.is_running else (200, 100, 100) pygame.draw.circle(self.screen, status_color, (400, 100), 10) status_text = self.font.render("运行中" if demo.is_running else "已停止", True, (30, 30, 30)) self.screen.blit(status_text, (415, 95)) # 暂停状态 if demo.paused: pause_text = self.font.render("已暂停", True, (200, 100, 50)) self.screen.blit(pause_text, (400, 130)) def _render_scenario_visualization(self, demo, scenario_state: Dict, current_time: float): """渲染场景可视化""" # 场景可视化背景 pygame.draw.rect(self.screen, (250, 250, 255), (20, 270, 450, 300), 0, 10) pygame.draw.rect(self.screen, (200, 200, 220), (20, 270, 450, 300), 2, 10) # 绘制地形 terrain_color = self.terrain_colors.get(scenario_state['terrain'], (180, 180, 180)) pygame.draw.rect(self.screen, terrain_color, (50, 350, 350, 100)) # 绘制地形特征 if scenario_state['terrain'] == 'slope': for i in range(10): pygame.draw.line(self.screen, (150, 150, 150), (50 + i * 35, 350), (50 + i * 35, 450 - i * 3), 2) elif scenario_state['terrain'] == 'stairs': for i in range(5): pygame.draw.rect(self.screen, (180, 160, 140), (50 + i * 70, 450 - i * 20, 70, 20 + i * 20)) elif scenario_state['terrain'] == 'sand': for i in range(20): x = 50 + np.random.randint(0, 350) y = 350 + np.random.randint(0, 100) pygame.draw.circle(self.screen, (210, 190, 150), (x, y), 3) # 绘制障碍物 for obs in scenario_state['obstacles']: color = self.obstacle_colors.get(obs['type'], (150, 150, 150)) x = 50 + (obs['position'][0] / 10) * 350 y = 400 - (obs['position'][1] / 2) * 50 radius = obs['radius'] * 50 pygame.draw.circle(self.screen, color, (int(x), int(y)), int(radius)) # 绘制机器人 robot_x = 50 + (min(current_time / demo.demo_config['duration'], 1.0) * 350) robot_y = 400 self.screen.blit(self.robot_img, (robot_x - 25, robot_y - 40)) # 绘制风力效果 if np.linalg.norm(scenario_state['wind']) > 0.1: wind_dir = scenario_state['wind'] / np.linalg.norm(scenario_state['wind']) for i in range(5): offset = i * 20 pygame.draw.line(self.screen, (100, 150, 255), (robot_x + 30 + offset, robot_y - 20), (robot_x + 50 + offset + wind_dir[0] * 10, robot_y - 20 + wind_dir[1] * 10), 2) pygame.draw.polygon(self.screen, (100, 150, 255), [ (robot_x + 50 + offset + wind_dir[0] * 10, robot_y - 20 + wind_dir[1] * 10), (robot_x + 45 + offset + wind_dir[0] * 15, robot_y - 25 + wind_dir[1] * 15), (robot_x + 45 + offset + wind_dir[0] * 15, robot_y - 15 + wind_dir[1] * 15) ]) # 场景标题 scene_title = self.font.render(f"当前场景: {scenario_state['description']}", True, (30, 30, 100)) self.screen.blit(scene_title, (40, 290)) def _render_3d_view(self, demo): """渲染3D视图""" # 3D视图背景 pygame.draw.rect(self.screen, (250, 250, 255), (500, 70, 680, 300), 0, 10) pygame.draw.rect(self.screen, (200, 200, 220), (500, 70, 680, 300), 2, 10) # 添加标题 title = self.font.render("机器人3D视图", True, (30, 30, 100)) self.screen.blit(title, (510, 80)) # 检查渲染组件是否可用 if self.scene is None or self.context is None or demo.robot.model is None: error_text = self.font.render("3D渲染不可用: 无法初始化OpenGL", True, (255, 0, 0)) self.screen.blit(error_text, (550, 150)) return try: # 更新3D场景 mujoco.mjv_updateScene( demo.robot.model, demo.robot.data, self.opt, None, self.camera, mujoco.mjtCatBit.mjCAT_ALL, self.scene) # 渲染到内存缓冲区 width, height = 680, 300 buffer = np.zeros((height, width, 3), dtype=np.uint8) viewport = mujoco.MjrRect(0, 0, width, height) mujoco.mjr_render(viewport, self.scene, self.context) # 获取渲染图像 mujoco.mjr_readPixels(buffer, None, viewport, self.context) # 转换为Pygame表面 img = Image.fromarray(buffer, 'RGB') img = img.transpose(Image.FLIP_TOP_BOTTOM) img_bytes = img.tobytes() py_image = pygame.image.fromstring(img_bytes, (width, height), 'RGB') # 绘制到屏幕 self.screen.blit(py_image, (500, 70)) except Exception as e: # 显示错误信息 error_text = self.font.render(f"3D渲染错误: {str(e)}", True, (255, 0, 0)) self.screen.blit(error_text, (510, 150)) def _render_performance_charts(self, demo): """渲染性能图表""" # 性能面板背景 pygame.draw.rect(self.screen, (250, 250, 255), (500, 390, 680, 180), 0, 10) pygame.draw.rect(self.screen, (200, 200, 220), (500, 390, 680, 180), 2, 10) # 标题 title = self.font.render("性能指标", True, (30, 30, 100)) self.screen.blit(title, (510, 400)) # 绘制能量消耗图表 if len(demo.energy_consumption) > 1: points = [] max_energy = max(demo.energy_consumption) if max(demo.energy_consumption) > 0 else 1 for i, val in enumerate(demo.energy_consumption): x = 520 + (i / len(demo.energy_consumption)) * 300 y = 550 - (val / max_energy) * 100 points.append((x, y)) if len(points) > 1: pygame.draw.lines(self.screen, (100, 150, 255), False, points, 2) # 绘制稳定性图表 if len(demo.performance_metrics) > 1: points = [] max_stability = max([m['stability'] for m in demo.performance_metrics]) or 1 for i, metric in enumerate(demo.performance_metrics): x = 850 + (i / len(demo.performance_metrics)) * 300 y = 550 - (metric['stability'] / max_stability) * 100 points.append((x, y)) if len(points) > 1: pygame.draw.lines(self.screen, (255, 150, 100), False, points, 2) # 图表标签 energy_label = self.font.render("能量消耗", True, (100, 150, 255)) self.screen.blit(energy_label, (520, 560)) stability_label = self.font.render("稳定性指标", True, (255, 150, 100)) self.screen.blit(stability_label, (850, 560)) def _render_instructions(self): """渲染控制说明""" # 控制说明背景 pygame.draw.rect(self.screen, (250, 250, 255), (20, 580, 1160, 100), 0, 10) pygame.draw.rect(self.screen, (200, 200, 220), (20, 580, 1160, 100), 2, 10) # 控制说明 instructions = [ "ESC: 退出程序", "空格键: 暂停/继续", "R键: 重置演示", "↑↓←→: 控制机器人移动", "C键: 切换摄像头视角" ] for i, text in enumerate(instructions): inst_text = self.font.render(text, True, (80, 80, 180)) self.screen.blit(inst_text, (40 + i * 220, 600)) def handle_events(self): """处理Pygame事件""" for event in pygame.event.get(): if event.type == QUIT: return False elif event.type == KEYDOWN: if event.key == K_ESCAPE: return False if event.key == K_SPACE: return "pause" elif event.key == K_r: return "reset" elif event.key == K_UP: return "move_forward" elif event.key == K_DOWN: return "move_backward" elif event.key == K_LEFT: return "move_left" elif event.key == K_RIGHT: return "move_right" elif event.key == K_c: return "change_camera" return True class HumanoidDemo: """人形机器人仿真演示类""" def __init__(self): """初始化演示系统""" print("🤖 人形机器人仿真演示系统") print("=" * 60) # 创建人形机器人 self.robot = self._create_robot() # 创建高级控制模块 self.decision_system = IntelligentDecisionSystem() self.path_planner = PathPlanner() self.energy_optimizer = EnergyOptimizer() self.adaptive_controller = AdaptiveController() # 创建可视化系统 - 传递机器人模型 self.visualization = VisualizationSystem( self.robot.model if hasattr(self.robot, 'model') else None ) # 演示配置 self.demo_config = { 'duration': 30.0, 'enable_ai': True, 'enable_optimization': True, 'enable_adaptation': True, 'record_data': True, 'save_video': False } # 演示数据 self.demo_data = { 'timestamps': [], 'robot_states': [], 'environment_states': [], 'decisions': [], 'energy_consumption': [0.0], 'performance_metrics': [{'stability': 1.0, 'efficiency': 1.0}] } # 运行状态 self.is_running = False self.current_time = 0.0 self.paused = False self.camera_mode = 0 # 0: 默认, 1: 跟随, 2: 第一人称 print("✅ 演示系统初始化完成") def _create_robot(self): """创建机器人实例,处理可能的错误""" try: return HumanoidRobot() except Exception as e: print(f"⚠️ 创建机器人时出错: {e}") print("⚠️ 使用模拟机器人替代") return HumanoidRobot() # 使用之前定义的模拟类 @property def energy_consumption(self): return self.demo_data['energy_consumption'] @property def performance_metrics(self): return self.demo_data['performance_metrics'] def setup_demo_scenario(self, scenario_type: str = "comprehensive"): """设置演示场景""" scenarios = { "comprehensive": self._setup_comprehensive_scenario, "walking": self._setup_walking_scenario, "obstacle": self._setup_obstacle_scenario, "terrain": self._setup_terrain_scenario, "interference": self._setup_interference_scenario } if scenario_type in scenarios: print(f"🎬 设置 {scenario_type} 演示场景...") scenarios[scenario_type]() else: print(f"⚠️ 未知场景类型: {scenario_type},使用综合场景") self._setup_comprehensive_scenario() def _setup_comprehensive_scenario(self): """设置综合演示场景""" self.scenario_timeline = [ [0, 5, "walking", "平地行走"], [5, 10, "obstacle", "动态避障"], [10, 15, "terrain", "斜坡行走"], [15, 20, "terrain", "楼梯攀爬"], [20, 25, "interference", "风力干扰"], [25, 30, "walking", "恢复行走"] ] self.environment_config = { 'obstacles': [ {'position': [2, 0, 0.5], 'radius': 0.3, 'type': 'static'}, {'position': [4, 1, 0.3], 'radius': 0.3, 'type': 'dynamic'}, {'position': [6, -1, 0.4], 'radius': 0.2, 'type': 'moving'} ], 'terrain_sequence': ['flat', 'slope', 'stairs', 'sand', 'flat'], 'wind_patterns': [ {'time': [20, 25], 'force': [50, 0, 0], 'type': 'gust'}, {'time': [25, 30], 'force': [20, 10, 0], 'type': 'steady'} ], 'light_patterns': [ {'time': [22, 24], 'intensity': 0.2, 'type': 'dim'}, {'time': [24, 26], 'intensity': 0.9, 'type': 'bright'} ] } def _setup_walking_scenario(self): """设置行走演示场景""" self.scenario_timeline = [ [0, 10, "walking", "基础行走"], [10, 20, "walking", "快速行走"], [20, 30, "walking", "慢速行走"] ] self.environment_config = { 'obstacles': [], 'terrain_sequence': ['flat'] * 3, 'wind_patterns': [], 'light_patterns': [] } def _setup_obstacle_scenario(self): """设置避障演示场景""" self.scenario_timeline = [ [0, 10, "obstacle", "静态障碍物"], [10, 20, "obstacle", "动态障碍物"], [20, 30, "obstacle", "复杂障碍物"] ] self.environment_config = { 'obstacles': [ {'position': [1, 0, 0.5], 'radius': 0.3, 'type': 'static'}, {'position': [3, 0, 0.3], 'radius': 0.2, 'type': 'dynamic'}, {'position': [5, 0, 0.4], 'radius': 0.25, 'type': 'moving'} ], 'terrain_sequence': ['flat'] * 3, 'wind_patterns': [], 'light_patterns': [] } def _setup_terrain_scenario(self): """设置地形演示场景""" self.scenario_timeline = [ [0, 6, "terrain", "平地"], [6, 12, "terrain", "斜坡"], [12, 18, "terrain", "楼梯"], [18, 24, "terrain", "沙地"], [24, 30, "terrain", "平地"] ] self.environment_config = { 'obstacles': [], 'terrain_sequence': ['flat', 'slope', 'stairs', 'sand', 'flat'], 'wind_patterns': [], 'light_patterns': [] } def _setup_interference_scenario(self): """设置干扰演示场景""" self.scenario_timeline = [ [0, 10, "walking", "正常行走"], [10, 20, "interference", "风力干扰"], [20, 30, "interference", "光照干扰"] ] self.environment_config = { 'obstacles': [], 'terrain_sequence': ['flat'] * 3, 'wind_patterns': [ {'time': [10, 20], 'force': [80, 0, 0], 'type': 'strong_wind'} ], 'light_patterns': [ {'time': [20, 30], 'intensity': 0.1, 'type': 'low_light'} ] } def get_current_scenario_state(self, current_time: float) -> Dict: """获取当前场景状态""" current_task = "idle" task_description = "待机" # 确定当前任务 for start_time, end_time, task, description in self.scenario_timeline: if start_time <= current_time < end_time: current_task = task task_description = description break # 确定当前地形 terrain_index = min(int(current_time / 6), len(self.environment_config['terrain_sequence']) - 1) current_terrain = self.environment_config['terrain_sequence'][terrain_index] # 计算当前风力 current_wind = np.zeros(3) for wind_pattern in self.environment_config['wind_patterns']: if wind_pattern['time'][0] <= current_time < wind_pattern['time'][1]: current_wind = np.array(wind_pattern['force']) break # 计算当前光照 current_light = 1.0 for light_pattern in self.environment_config['light_patterns']: if light_pattern['time'][0] <= current_time < light_pattern['time'][1]: current_light = light_pattern['intensity'] break return { 'task': current_task, 'description': task_description, 'terrain': current_terrain, 'wind': current_wind, 'light': current_light, 'obstacles': self.environment_config['obstacles'].copy(), 'time': current_time } def update_robot_state(self): """更新机器人状态""" # 模拟机器人控制逻辑 # 这里应该调用实际的机器人控制模块 pass def change_camera_mode(self): """切换摄像头视角""" self.camera_mode = (self.camera_mode + 1) % 3 if self.visualization.camera: if self.camera_mode == 0: # 默认视角 self.visualization.camera.distance = 5.0 self.visualization.camera.elevation = -20 self.visualization.camera.azimuth = 90 elif self.camera_mode == 1: # 跟随视角 self.visualization.camera.distance = 3.0 self.visualization.camera.elevation = -10 self.visualization.camera.azimuth = 45 elif self.camera_mode == 2: # 第一人称视角 self.visualization.camera.distance = 1.5 self.visualization.camera.elevation = 0 self.visualization.camera.azimuth = 0 def record_data(self, current_time): """记录演示数据""" self.demo_data['timestamps'].append(current_time) # 模拟能量消耗 - 根据地形和任务类型变化 energy_factor = 1.0 if self.get_current_scenario_state(current_time)['terrain'] == 'slope': energy_factor = 1.5 elif self.get_current_scenario_state(current_time)['terrain'] == 'stairs': energy_factor = 1.8 elif self.get_current_scenario_state(current_time)['terrain'] == 'sand': energy_factor = 2.0 new_energy = self.energy_consumption[-1] + 0.1 * energy_factor self.energy_consumption.append(new_energy) # 模拟性能指标 stability = 1.0 - np.random.uniform(0, 0.1) efficiency = 1.0 - np.random.uniform(0, 0.05) self.performance_metrics.append({ 'stability': max(0.1, stability), 'efficiency': max(0.1, efficiency) }) def run_demo(self): """运行演示""" print(f"🚀 开始演示,持续时间: {self.demo_config['duration']}秒") print("=" * 60) self.is_running = True start_time = time.time() try: while self.current_time < self.demo_config['duration']: # 处理事件 event_result = self.visualization.handle_events() if event_result == False: break elif event_result == "pause": self.paused = not self.paused elif event_result == "reset": start_time = time.time() self.current_time = 0.0 self.demo_data = { 'timestamps': [], 'energy_consumption': [0.0], 'performance_metrics': [{'stability': 1.0, 'efficiency': 1.0}] } elif event_result == "change_camera": self.change_camera_mode() if self.paused: time.sleep(0.1) continue # 更新当前时间 self.current_time = time.time() - start_time # 更新机器人状态 self.update_robot_state() # 记录数据 if self.demo_config['record_data']: self.record_data(self.current_time) # 渲染可视化界面 self.visualization.render_2d(self, self.current_time) # 控制帧率 self.visualization.clock.tick(30) self.is_running = False print("\n✅ 演示完成!") except Exception as e: self.is_running = False print(f"\n⛔ 演示出错: {e}") traceback.print_exc() finally: pygame.quit() def main(): """主函数""" parser = argparse.ArgumentParser(description='人形机器人仿真演示') parser.add_argument('--scenario', type=str, default='comprehensive', choices=['comprehensive', 'walking', 'obstacle', 'terrain', 'interference'], help='演示场景类型') parser.add_argument('--duration', type=float, default=30.0, help='演示持续时间(秒)') args = parser.parse_args() # 创建演示实例 demo = HumanoidDemo() demo.demo_config['duration'] = args.duration # 设置场景 demo.setup_demo_scenario(args.scenario) # 运行演示 demo.run_demo() if __name__ == "__main__": main()
最新发布
07-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值