属性规约 降维 主成分分析 PCA
数值规约
from sklearn.decomposition import PCA
import pandas as pd
import numpy as np
data = pd.read_excel(“F:/result/b.xls”)
删除有缺失值的行
data.dropna(inplace=True)
主成分分析
pca1 = PCA()
pca1.fit(data)
返回模型中的各个特征量print(tz1)
chara = pca1.components_
print(chara)
各个成分中各自方差百分比(贡献率)
c_rate = pca1.explained_variance_ratio_
print(c_rate)
降维 3维变2维
pca2 = PCA(2)
pca2.fit(data)
reduct = pca2.transform(data)
print(reduct)
恢复维度
recovery = pca2.inverse_transform(reduct)
print(recovery)