Training Contest 5 H - H to O

本文介绍了一个化学反应模拟算法,该算法能够计算给定分子数量下,通过分解和重组分子,可以形成目标分子的最大数量。算法首先统计输入分子中各原子的数量,然后与目标分子进行比较,确保所有原子数量满足条件。此算法对于检测化学反应过程中的潜在问题至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目
C6H12O6+6O2→6CO2+6H2O
Professor Cesium has created a new process to transform some chemical product into another type of chemical with some residues. The process is simple: he just needs to input a given number of molecules of type A, enter the output type B he desires and start the machine. It creates as many molecules of type B as possible. Unfortunately, professor Cadmium was jealous of his work and tried to sabotage the machine by inverting wires on his machine. Professor Cesium, alerted by one of his assistants, was able to repair the mistake. To detect any problem in the future, he is asking you to create an automatic way to compute the number of molecules that the machine should output. With this algorithm, he is able to detect whether his precious machine was tampered with.

Molecules are written as strings composed of uppercase letters (A–Z) and numbers. Uppercase letters represent atoms. Note that Cesium only uses single letters of the alphabet as abbreviations for atoms, so H, C, A, X, Y, …can be used but He, Mg, …cannot. If a letter is not followed by a number, it means there is only one atom of it. An atom followed by a number l (1≤l<103) represents l copies of that atom. Atoms can appear multiple times in a chemical product.

For example: H2OC100H means 2 atoms of H, then 1 of O, then 100 of C then 1 of H again.

Input
The first line contains the input molecule, a string of length at most 2500, followed by an integer 1≤k≤103, denoting how many of these molecules professor Cesium has.

The second line contains the desired output molecule, given as a string of length at most 2500.

Output
The output consists of a single line containing the maximum number n of output molecules we are able to construct using the input molecules.

这个题题意是你有k个所给分子数,你通过将这个分子拆分再组合成另一个分子,问你最多能组合几个你想要的分子,可考虑先统计原分子中个原子个数再与新分子中各个原子比较即可,说白了就是统计字母出现次数,然后至少满足新分子中出现的字母数量和原分子出现字母数量相除之和的最小的那个,这里考虑一种情况当新分子中出现了原分子中没有的原子则直接输出0

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
string s1,s2;
int a[50],b[50],k;
ll minn=999999999;
int main()
{
	cin>>s1>>k;
	cin>>s2;
	int len=s1.size();
	for(int i=0;i<len;i++){
		if((s1[i]>='A'&&s1[i]<='Z'&&s1[i+1]>='A'&&s1[i+1]<='Z')||(i==len-1)){   //当两个字母相连时还要记录前面字母出现了一次以及当有字母出现在最后一个位置是的情况
			a[s1[i]-'A']++;                     //通过 -'A'的操作间接记录各个字母出现次数
		}
		int num=s1[i]-'A';                
		if(s1[i]>='A'&&s1[i]<='Z'&&s1[i+1]>='0'&&s1[i+1]<='9'){
			int d=0;
			for(i++;s1[i]>='0'&&s1[i]<='9';i++) d=d*10+s1[i]-'0';
			a[num]+=d;
			i--;
		}
	}
	int len2=s2.size();
	for(int i=0;i<len2;i++){
		if((s2[i]>='A'&&s2[i]<='Z'&&s2[i+1]>='A'&&s2[i+1]<='Z')||(i==len2-1)){
			b[s2[i]-'A']++;
		}
		int num=s2[i]-'A';
		if(s2[i]>='A'&&s2[i]<='Z'&&s2[i+1]>='0'&&s2[i+1]<='9'){
			int d=0;
			for(i++;s2[i]>='0'&&s2[i]<='9';i++) d=d*10+s2[i]-'0';
			b[num]+=d;
			i--;
		}
	}
	for(int i=0;i<30;i++){
		if(b[i]&&!a[i]){
			cout<<"0"<<endl;
			return 0;
		}
		if(a[i]&&b[i]){
			if(minn>a[i]*k/b[i])//记得乘以k,minn取最小的那个值
				minn=a[i]*k/b[i];
		}
	}
	cout<<minn<<endl;
	return 0;
}
### CCPC 2023 H题 解析 关于CCPC 2023 H题的具体题目描述尚未公开,但从以往的比赛惯例以及类似的题目解析可以推测其可能涉及的内容和技术要点。以下是基于已有参考资料和专业知识对该类问题的解答框架。 #### 1. **问题背景** CCPC(Chinese Collegiate Programming Contest)作为国内重要的编程竞赛之一,通常会设计具有挑战性的算法问题来测试参赛者的逻辑思维能力和编码技巧。H题通常是比赛中的难点之一,往往涉及到复杂的算法模型或数据结构的应用[^2]。 #### 2. **潜在的技术方向** 根据过往的经验,H题可能会覆盖以下几个方面: - 动态规划 (Dynamic Programming)[^1] - 构造性问题 (Construction Problems)[^4] - 数学优化 (Mathematical Optimization) 假设该题属于动态规划类别,则需关注状态转移方程的设计;如果是构造性问题,则重点在于如何通过有限操作达到目标条件。 #### 3. **通用解题策略** 无论具体主题为何种类型,在面对高难度赛题时可遵循如下方法论: ##### (1)深入理解题目需求 仔细阅读并反复确认输入输出的要求及其约束条件,确保不会遗漏任何细节信息[^3]。 ##### (2)选取合适的算法工具箱 依据实际场景挑选最匹配的方法论,比如当存在重叠子问题且具备最优子结构性质时优先选用DP技术[^1]。 ##### (3)编写清晰易懂的代码实现 采用模块化的方式分步完成整个功能开发流程,并辅以充分注释说明每一部分的作用机制。 ```cpp // 示例伪代码片段展示基本框架布局 #include <bits/stdc++.h> using namespace std; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; // 输入规模参数 vector<long long> dp(n+1, INF); // 初始化dp数组,默认极大值表示未访问过 dp[0]=0; for(int i=1;i<=n;i++){ for(auto &coin : coins){ if(i >= coin && dp[i - coin]+costs[coin]<dp[i]){ dp[i]=dp[i - coin]+costs[coin]; } } } cout << (dp[n]==INF ? -1 : dp[n])<< "\n"; } ``` 上述例子仅作示意用途,真实情况下应严格依照官方给定的数据范围调整变量类型及边界处理方式。 #### 4. **复杂度考量** 对于大规模实例而言,效率至关重要。因此除了正确率之外还需兼顾运行时间和内存消耗指标。一般建议尽可能降低渐近时间开销至O(NlogN)甚至更低级别。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值