算法入门(C++) 评价算法的方法——算法复杂度

本文深入解析算法复杂度,涵盖时间复杂度与空间复杂度的概念、计算方法及其在计算机科学中的应用。理解算法效率,掌握资源消耗评估技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法复杂度

算法复杂度分为时间复杂度空间复杂度

其作用: 时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。

(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。

时间复杂度

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。

根据 《数据结构(C语言版)》------严蔚敏 吴伟民编著 第15页,"整个算法的执行时间与基本操作重复执行的次数成正比。"基本操作重复执行的次数是问题规模n的某个函数f(n),于是算法的时间量度可以记为:T(n) = O(f(n))如果按照这么推断,T(n)应该表示的是算法的时间量度,也就是算法执行的时间。而该页对"语句频度"也有定义:指的是该语句重复执行的次数。如果是基本操作所在语句重复执行的次数,那么就该是f(n)。上边的n都表示的问题规模。

空间复杂度

程序执行时所需存储空间包括以下两部分:

(1)固定部分。这部分空间的大小与输入/输出的数据的个数多少、数值无关。主要包括指令空间(即代码空间)、数据空间(常量、简单变量)等所占的空间。这部分属于静态空间。

(2)可变空间,这部分空间的主要包括动态分配的空间,以及递归栈所需的空间等。这部分的空间大小与算法有关。

一个算法所需的存储空间用f(n)表示。S(n)=O(f(n))其中n为问题的规模,S(n)表示空间复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值