BFS

BFS

定义一个二维数组:
int maze[5][5] = {
0, 1, 0, 0, 0,
0, 1, 0, 1, 0,
0, 0, 0, 0, 0,
0, 1, 1, 1, 0,
0, 0, 0, 1, 0,
};
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。

Input
一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。
Output
左上角到右下角的最短路径,格式如样例所示。

Sample Input
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
Sample Output
(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)

分析 :
把每个点的相关点加入队列,每次从队列最前端取出元素
解题 :

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int MA=105;
struct node
{
    int x,y,step;//step 是控制数组第几项,step还影响 ut;
    int ut;// ut 控制是否继续输出;
}s[MA];
int vis[5][5];
int mp[5][5];
int xx[4]={0,0,-1,1};
int yy[4]={1,-1,0,0};
int sx,sy,ex,ey;
int tx,ty;
int cnt;
int dfs(int sx,int sy,int ex,int ey)
{
    queue<node>q;
    node u={sx,sy,0,-1};
    vis[u.x][u.y]=1;
    s[0]=u;
    q.push(s[0]);
    while(!q.empty()){
    u=q.front();
    q.pop();
    if(u.x==ex&&u.y==ey)
        return cnt;
    for(int i=0;i<4;++i)
    {
        tx=u.x+xx[i];
        ty=u.y+yy[i];
        if(tx<0||tx>4||ty<0||ty>4||mp[tx][ty]==1)
            continue;
        if(!vis[tx][ty])
        {
           vis[tx][ty]=1;
           node cpy={tx,ty,++cnt,u.step};
           s[cnt]=cpy;
           q.push(cpy);
        }
    }
    }
}
void print(int i)
{
    if(s[i].ut!=-1)
    {
        print(s[i].ut);
    }
    printf("%d %d\n",s[i].x,s[i].y);
}

int main()
{
    cout<<"输入地图:"<<endl;
    memset(vis,0,sizeof(vis));
    for(int i=0;i<5;++i)
    {
        for(int j=0;j<5;++j)
            cin>>mp[i][j];
    }
    print(dfs(0,0,4,4));
    return 0;
}
BFS(广度优先搜索)算法是一种用于遍历或搜索图结构的经典算法,其核心原理是从起点开始,逐层扩展搜索范围,直到找到目标节点或遍历完整个图。该算法特别适用于求解最短路径问题或扩散性质的区域问题[^1]。 ### BFS算法原理 BFS算法从初始状态(起点)出发,按照状态转换规则(图结构中的边),逐步遍历所有可能的状态(节点),直到找到目标状态(终点)。其核心思想是“先扩散后深入”,即每次处理当前层的所有节点,再进入下一层处理。这种逐层扩散的方式确保了BFS在首次到达目标节点时,所走的路径是最短的。 ### BFS算法实现方法 BFS算法通常使用队列(Queue)来实现,队列用于存储待处理的节点。具体步骤如下: 1. 将起点节点加入队列,并标记为已访问。 2. 当队列不为空时,取出队列中的第一个节点。 3. 对当前节点进行处理,例如检查是否为目标节点。 4. 遍历当前节点的所有相邻节点,如果未被访问,则标记为已访问,并加入队列。 5. 重复步骤2-4,直到找到目标节点或队列为空。 以下是一个简单的BFS算法实现示例,用于遍历图结构: ```python from collections import deque def bfs(graph, start): visited = set() # 用于记录已访问的节点 queue = deque([start]) # 初始化队列 visited.add(start) # 标记起点为已访问 while queue: node = queue.popleft() # 取出队列中的第一个节点 print(node) # 处理当前节点 # 遍历当前节点的所有相邻节点 for neighbor in graph[node]: if neighbor not in visited: visited.add(neighbor) # 标记为已访问 queue.append(neighbor) # 加入队列 ``` ### BFS算法的复杂度分析 BFS算法的时间复杂度和空间复杂度均与图中的节点数和边数相关。假设图中有 $V$ 个节点和 $E$ 条边,则时间复杂度为 $O(V + E)$,空间复杂度为 $O(V)$。这是因为BFS需要访问所有节点和边,并且队列可能存储最多 $V$ 个节点[^1]。 ### BFS算法的应用场景 BFS算法广泛应用于以下问题: 1. **走迷宫最短路径**:寻找从起点到终点的最短路径。 2. **数字按规则转换的最少次数**:例如,将一个数字转换为另一个数字所需的最少操作次数。 3. **棋盘上某个棋子N步后能到达的位置总数**:计算棋子在N步内可以到达的所有位置。 4. **病毒扩散计算**:模拟病毒在人群中的扩散过程。 5. **图像中连通块的计算**:识别图像中的连通区域[^1]。 ### BFS与DFS的比较 - **BFS**:通过队列实现,适合解决最短路径问题,但空间复杂度较高。 - **DFS**:通过递归或栈实现,适合解决需要遍历完整棵树的问题,但时间复杂度较高。 例如,在满二叉树的情况下,BFS的空间复杂度为 $O(N)$,而DFS的空间复杂度为 $O(\log N)$[^2]。 ### BFS的优势与局限性 - **优势**:BFS可以保证首次到达目标节点时的路径是最短的,适用于最短路径问题。 - **局限性**:BFS的空间复杂度较高,尤其在处理大规模图时,可能需要较多的内存资源[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值