Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
Figure A Sample Input of Radar Installations
Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
Sample Input
3 2
1 2
-3 1
2 1
1 2
0 2
0 0
Sample Output
Case 1: 2
Case 2: 1
不得不承认 北大的题目质量是真的高。这个问题用到了贪心。刚开始。我考虑的是 找到最大的y 当然这个y是小于系统的半径的。以这个最大的y为半径画圆。然后找出这个范围内的点。并删除。
后来 参考了别人的想法以后 便有了新的想法。
我们可以以一个点。做圆心 以系统的检测半径为半径画圆。这样便会跟坐标轴出现两个交点。这样 我们只要在这两个交点的范围内 随便取一个点 就可以检测这个点。当我们把所有点与坐标轴的交点求出来。题目便成了一个类似区间覆盖的问题了。只需要求是否有公共点了,问题就迎刃而解了。
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std;
struct node
{
double x,y;
} da[10000];
bool cmp(node a,node b)//排序
{
if(a.y==b.y)
return a.x>b.x;
return a.y<b.y;
}
int main()
{
int n,d;
double x1,y1;
int ans;
int k=0;
while(scanf("%d%d",&n,&d)&&n||d)
{
ans=1;
for(int i=0; i<n; i++)//注意是double
{
scanf("%lf%lf",&x1,&y1);
da[i].x=x1-sqrt(d*d-y1*y1);
da[i].y=x1+sqrt(d*d-y1*y1);
if((d-y1)<0||d<0)
ans=-1;
}
if(ans==-1)
{
printf("Case %d: -1\n",++k);
continue;
}
else
{
double t1;
sort(da,da+n,cmp);
t1= da[0].y;
for(int i=1; i<n ; i++)
if(da[i].x>t1)
{
ans++;
t1 = da[i].y;//更新右范围
}
printf("Case %d: %d\n",++k, ans);
}
}
}