LeetCode编程集训第3次

本文深入探讨了队列的基本概念及其操作,同时详细解析了堆排序的原理,包括最大堆调整、建立最大堆和堆排序的具体步骤。并通过一道编程练习题,展示了如何运用队列和堆排序解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、队列

队列是一种先进先出的线性表。
它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列中没有元素时,称为空队列。
如图所示:

二、堆排序 

1、概念:

  • 堆栈是计算机的两种最基本的数据结构。堆的特点就是FIFO(first in first out)先进先出,可以理解成树的结构。堆在接收数据的时候先接收的数据会被先弹出。
  • 栈的特性正好与堆相反,是属于FILO(first in/last out)先进后出的类型。栈处于一级缓存而堆处于二级缓存中。

2、堆节点的访问

通常堆是通过一维数组来实现的。在阵列起始位置为0的情况中

  • 父节点i的左子节点在位置(2*i+1)
  • 父节点i的右子节点在位置(2*i+2)
  • 子节点i的父节点在位置floor((i-1)/2)

3、堆操作

  • 最大堆调整(MAX_Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点。这是核心步骤,在建堆和堆排序都会用到。比较i的根节点和与其所对应i的孩子节点的值。当i根节点的值比左孩子节点的值要小的时候,就把i根节点和左孩子节点所对应的值交换,当i根节点的值比右孩子的节点所对应的值要小的时候,就把i根节点和右孩子节点所对应的值交换。然后再调用堆调整这个过程,可见这是一个递归的过程。
  • 建立最大堆(Build_Max_Heap):将堆所有数据重新排序。建堆的过程其实就是不断做最大堆调整的过程,从len/2出开始调整,一直比到第一个节点。
  • 堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整的递归运算。堆排序是利用建堆和堆调整来进行的。首先先建堆,然后将堆的根节点选出与最后一个节点进行交换,然后将前面len-1个节点继续做堆调整的过程。直到将所有的节点取出,对于n个数我们只需要做n-1次操作。
     

三、编程练习 

第一题(239)

 内容描述:

  • 最大堆调整(MAX_Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点。这是核心步骤,在建堆和堆排序都会用到。比较i的根节点和与其所对应i的孩子节点的值。当i根节点的值比左孩子节点的值要小的时候,就把i根节点和左孩子节点所对应的值交换,当i根节点的值比右孩子的节点所对应的值要小的时候,就把i根节点和右孩子节点所对应的值交换。然后再调用堆调整这个过程,可见这是一个递归的过程。
  • 建立最大堆(Build_Max_Heap):将堆所有数据重新排序。建堆的过程其实就是不断做最大堆调整的过程,从len/2出开始调整,一直比到第一个节点。
  • 堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整的递归运算。堆排序是利用建堆和堆调整来进行的。首先先建堆,然后将堆的根节点选出与最后一个节点进行交换,然后将前面len-1个节点继续做堆调整的过程。直到将所有的节点取出,对于n个数我们只需要做n-1次操作。

给定一个数组 nums,有一个大小为 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口 k 内的数字。滑动窗口每次只向右移动一位。

返回滑动窗口最大值。

示例:

输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7] 
解释: 

  滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

注意:

你可以假设 k 总是有效的,1 ≤ k ≤ 输入数组的大小,且输入数组不为空。

进阶:

你能在线性时间复杂度内解决此题吗?

解题方案:

  • 思路:窗口的滑动过程中数字的进出类似一个队列中元素的出队入队,采用一个队列queue存储可能成为最大值的元素下标。如果每次入队的新元素比队尾元素小,则将其删除,直至队尾元素大于新元素或队空。(因为被删除元素既没有当前元素大,也没有当前元素新,所以肯定不会替代当前元素成为最大值的)
    找最大值时从队头开始,如果队头元素对应的index不在当前窗口则将其删除,直到找到在窗口中的元素,即为最大值。
  • 代码: 
    class Solution(object):
        def maxSlidingWindow(self, nums, k):
            """
            :type nums: List[int]
            :type k: int
            :rtype: List[int]
            """
            if not nums: 
                return [] 
            from collections import deque 
            dq = deque() 
            n = len(nums) 
            ans = [] 
            for i in range(k-1): 
                while len(dq) > 0: 
                    if nums[dq[-1]] <= nums[i]: 
                        dq.pop() 
                    else: 
                        break 
                dq.append(i) 
            for i in range(k-1, n): 
                while len(dq) > 0: 
                    if nums[dq[-1]] <= nums[i]: 
                        dq.pop() 
                    else: 
                        break 
                dq.append(i) 
                while dq[0] < i-k+1: 
                    dq.popleft() 
                ans.append(nums[dq[0]]) 
            return ans
  • 运行结果:

 四、回顾往期

【任务一】
数组:学习哈希表思想,并完成leetcode上的两数之和(1)及Happy    Number(202)!(要求全部用哈希 思想实现!)https://shimo.im/sheet/xjO2SX8fJJkRTJ4s/ 《DW编程集训第二期-任务1》,可复制链接 后用石墨文档 App 打开
【任务二】
链表:学习单链表知识,实践环形链表(142,要求至少两种方法!)及反转一个单链表(206),不限制语  言!https://shimo.im/sheet/1wghoDz457oLIOqh/ 《DW编程集训第二期-任务2》,可复制链接后用石墨 文档 App 打开

 

 

 

基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值