理解图像卷积操作的意义---个人笔记

本文探讨数字图像处理中卷积操作的关键原则,包括卷积核的尺寸选择、能量守恒及滤波效果,同时讨论了边界补充问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

个人笔记

理解图像卷积操作的意义 - chaibubble - 优快云博客  https://blog.youkuaiyun.com/chaipp0607/article/details/72236892

数字图像处理中的卷积:

卷积核的选择有一些规则: 
1)卷积核的大小一般是奇数,这样的话它是按照中间的像素点中心对称的,所以卷积核一般都是3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2。 
2)卷积核所有的元素之和一般要等于1,这是为了原始图像的能量(亮度)守恒。其实也有卷积核元素相加不为1的情况,下面就会说到。 
3)如果滤波器矩阵所有元素之和大于1,那么滤波后的图像就会比原图像更亮,反之,如果小于1,那么得到的图像就会变暗。如果和为0,图像不会变黑,但也会非常暗。 
4)对于滤波后的结构,可能会出现负数或者大于255的数值。对这种情况,我们将他们直接截断到0和255之间即可。对于负数,也可以取绝对值
 

边界补充问题

太长,还是看原文去吧。。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值