前面的话
代码作者是 莫烦 大佬。在github上可以找到代码原文。同时在视频网站上可以找到 莫烦 大佬的系列教学视频。
这里我用代码注释的形式标注了所有代码的含义,同时还有部分函数方法的简单用法。各位可以看情况细细研究或者知其大概。
代码部分
"""
This part of code is the DQN brain, which is a brain of the agent.
All decisions are made in here.
Using Tensorflow to build the neural network.
View more on my tutorial page: https://morvanzhou.github.io/tutorials/
Using:
Tensorflow: 1.0
gym: 0.7.3
"""
import numpy as np
import pandas as pd
import tensorflow as tf
# 设置随机数seed
np.random.seed(1)
tf.set_random_seed(1)
# Deep Q Network off-policy
class DeepQNetwork:
def __init__(
self,
n_actions,
n_features,
learning_rate=0.01,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=300,
memory_size=500,
batch_size=32,
e_greedy_increment=None,
output_graph=False,
):
self.n_actions = n_actions # action num
self.n_features = n_features # state num
self.lr = learning_rate # 学习率
self.gamma = reward_decay # 折扣因子
self.epsilon_max = e_greedy # 贪婪决策概率
self.replace_target_iter = replace_target_iter # target和eval的参数更新间隔步
self.memory_size = memory_size # 记忆库大小
self.batch_size = batch_size # 批量大小
self.epsilon_increment = e_greedy_increment # greedy变化
self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
# total learning step
self.learn_step_counter = 0 # 计步器
# initialize zero memory [s, a, r, s_]
self.memory = np.zeros((self.memory_size,
n_features * 2 + 2)) # 初始化记忆库
# consist of [target_net, evaluate_net]
self._build_net()
t_params = tf.get_collection('target_net_params')
e_params = tf.get_collection('eval_net_params')
#zip() 函数用于将可迭代对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象。
self.replace_target_op = [
tf.assign(t, e) for t, e in zip(t_params, e_params)
]
self.sess = tf.Session()
if output_graph:
# $ tensorboard --logdir=logs
# tf.train.SummaryWriter soon be deprecated, use following
tf.summary.FileWriter("E:/Code/logs", self.sess.graph)
self.sess.run(tf.global_variables_initializer())
self.cost_his =