1,幂数加密
云影密码
如果密码只有01248组成。。。
原理很简单,有了1,2,4,8这四个简单的数字,你可以以加法表示出0-9任何一个数字,例如0=28,7=124,9=18。
这样,再用1-26来表示A-Z,就可以用作密码了。
a=["88421","0122","048","02244","04","0142242","0248","0122"]
flag=""
for j in range(0,len(a)):
str = a[j]
list=[]
sum=0
for i in str:
list.append(i)
length = len(list)
for i in range(0,length):
sum+=int(list[i])
flag+=chr(64+sum)
print flag
利用脚本,获得flag
2,base64
base64,简单明了
3,Caesar
简单明了
技巧:可看第一位针对C或f 的偏移即为偏移量,一般首字母都为ctf或flag。
4,Morse
morse解码
5,Railfence
提示栅栏,尝试栅栏解密无解
发现w型栅栏解密,百度寻找在线解密工具,获得flag
http://www.atoolbox.net/Tool.php?Id=777
6,转轮机加密
搞懂原理后,脚本运行
import re
sss='''1: < ZWAXJGDLUBVIQHKYPNTCRMOSFE < 2: < KPBELNACZDTRXMJQOYHGVSFUWI < 3: < BDMAIZVRNSJUWFHTEQGYXPLOCK < 4: < RPLNDVHGFCUKTEBSXQYIZMJWAO < 5: < IHFRLABEUOTSGJVDKCPMNZQWXY < 6: < AMKGHIWPNYCJBFZDRUSLOQXVET < 7: < GWTHSPYBXIZULVKMRAFDCEONJQ < 8: < NOZUTWDCVRJLXKISEFAPMYGHBQ < 9: < XPLTDSRFHENYVUBMCQWAOIKZGJ < 10: < UDNAJFBOWTGVRSCZQKELMXYIHP < 11 < MNBVCXZQWERTPOIUYALSKDJFHG < 12 < LVNCMXZPQOWEIURYTASBKJDFHG < 13 < JZQAWSXCDERFVBGTYHNUMKILOP <
'''
m="NFQKSEVOQOFNP"
content=re.findall(r'< (.*?) <',sss,re.S)
iv=[2,3,7,5,13,12,9,1,8,10,4,11,6]
vvv=[]
ans=""
for i in range(13):
index=content[iv[i]-1].index(m[i])
vvv.append(index)
for i in range(0,26):
flag=""
for j in range(13):
flag+=content[iv[j]-1][(vvv[j]+i)%26]
print flag
7,easy_RSA
可使用这款工具
https://github.com/3summer/CTF-RSA-tool
python solve.py --verbose --private -N 2135733555619387051 -e 17 -p 473398607161 -q 4511491
8,Normal_RSA
同上工具
python solve.py --verbose -k examples/jarvis_oj_mediumRSA/pubkey.pem --decrypt examples/jarvis_oj_mediumRSA/flag.enc
9,不仅仅是Morse
摩尔斯加密和培根加密
10,混合编码
Base64->Unicode->Base64->Ascii
11,easychallenge
在线反汇编或者pip install uncompyle或pip3得到py文件,然后按照加密代码写出解密代码解密即可
12,ecc
import collections
import random
EllipticCurve = collections.namedtuple('EllipticCurve', 'name p a b g n h')
curve = EllipticCurve(
'secp256k1',
# Field characteristic.
p=int(input('p=')),
# Curve coefficients.
a=int(input('a=')),
b=int(input('b=')),
# Base point.
g=(int(input('Gx=')),
int(input('Gy='))),
# Subgroup order.
n=int(input('k=')),
# Subgroup cofactor.
h=1,
)
# Modular arithmetic ##########################################################
def inverse_mod(k, p):
"""Returns the inverse of k modulo p.
This function returns the only integer x such that (x * k) % p == 1.
k must be non-zero and p must be a prime.
"""
if k == 0:
raise ZeroDivisionError('division by zero')
if k < 0:
# k ** -1 = p - (-k) ** -1 (mod p)
return p - inverse_mod(-k, p)
# Extended Euclidean algorithm.
s, old_s = 0, 1
t, old_t = 1, 0
r, old_r = p, k
while r != 0:
quotient = old_r // r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
old_t, t = t, old_t - quotient * t
gcd, x, y = old_r, old_s, old_t
assert gcd == 1
assert (k * x) % p == 1
return x % p
# Functions that work on curve points #########################################
def is_on_curve(point):
"""Returns True if the given point lies on the elliptic curve."""
if point is None:
# None represents the point at infinity.
return True
x, y = point
return (y * y - x * x * x - curve.a * x - curve.b) % curve.p == 0
def point_neg(point):
"""Returns -point."""
assert is_on_curve(point)
if point is None:
# -0 = 0
return None
x, y = point
result = (x, -y % curve.p)
assert is_on_curve(result)
return result
def point_add(point1, point2):
"""Returns the result of point1 + point2 according to the group law."""
assert is_on_curve(point1)
assert is_on_curve(point2)
if point1 is None:
# 0 + point2 = point2
return point2
if point2 is None:
# point1 + 0 = point1
return point1
x1, y1 = point1
x2, y2 = point2
if x1 == x2 and y1 != y2:
# point1 + (-point1) = 0
return None
if x1 == x2:
# This is the case point1 == point2.
m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
else:
# This is the case point1 != point2.
m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
x3 = m * m - x1 - x2
y3 = y1 + m * (x3 - x1)
result = (x3 % curve.p,
-y3 % curve.p)
assert is_on_curve(result)
return result
def scalar_mult(k, point):
"""Returns k * point computed using the double and point_add algorithm."""
assert is_on_curve(point)
if k < 0:
# k * point = -k * (-point)
return scalar_mult(-k, point_neg(point))
result = None
addend = point
while k:
if k & 1:
# Add.
result = point_add(result, addend)
# Double.
addend = point_add(addend, addend)
k >>= 1
assert is_on_curve(result)
return result
# Keypair generation and ECDHE ################################################
def make_keypair():
"""Generates a random private-public key pair."""
private_key = curve.n
public_key = scalar_mult(private_key, curve.g)
return private_key, public_key
private_key, public_key = make_keypair()
print("private key:", hex(private_key))
print("public key: (0x{:x}, 0x{:x})".format(*public_key))
最后的flag为公钥的两个值相加
本文介绍了一系列密码学解密挑战,包括云影密码、Base64、凯撒密码、摩尔斯电码、栅栏密码、转轮机加密、RSA算法等,并提供了相应的解密思路和工具,帮助读者理解各种加密技术并进行解密实践。
2712

被折叠的 条评论
为什么被折叠?



